Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Biochem J ; 461(3): 531-7, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24911653

RESUMEN

IKKß {IκB [inhibitor of NF-κB (nuclear factor κB)] kinase ß} is required to activate the transcription factor NF-κB, but how IKKß itself is activated in vivo is still unclear. It was found to require phosphorylation by one or more 'upstream' protein kinases in some reports, but by autophosphorylation in others. In the present study, we resolve this contro-versy by demonstrating that the activation of IKKß induced by IL-1 (interleukin-1) or TNF (tumour necrosis factor) in embryonic fibroblasts, or by ligands that activate Toll-like receptors in macrophages, requires two distinct phosphorylation events: first, the TAK1 [TGFß (transforming growth factor ß)-activated kinase-1]-catalysed phosphorylation of Ser¹77 and, secondly, the IKKß-catalysed autophosphorylation of Ser¹8¹. The phosphorylation of Ser¹77 by TAK1 is a priming event required for the subsequent autophosphorylation of Ser¹8¹, which enables IKKß to phosphorylate exogenous substrates. We also provide genetic evidence which indicates that the IL-1-stimulated, LUBAC (linear ubiquitin chain assembly complex)-catalysed formation of linear ubiquitin chains and their interaction with the NEMO (NF-κB essential modulator) component of the canonical IKK complex permits the TAK1-catalysed priming phosphorylation of IKKß at Ser¹77 and IKKα at Ser¹76. These findings may be of general significance for the activation of other protein kinases.


Asunto(s)
Quinasa I-kappa B/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Procesamiento Proteico-Postraduccional , Sustitución de Aminoácidos , Animales , Células Cultivadas , Embrión de Mamíferos/citología , Activación Enzimática/efectos de los fármacos , Técnicas de Sustitución del Gen , Células HEK293 , Humanos , Quinasa I-kappa B/antagonistas & inhibidores , Quinasa I-kappa B/química , Quinasa I-kappa B/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Ratones , Ratones Transgénicos , Proteínas Mutantes/antagonistas & inhibidores , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Fosforilación/efectos de los fármacos , Dominios y Motivos de Interacción de Proteínas , Inhibidores de Proteínas Quinasas/farmacología , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Serina/metabolismo , Ubiquitinación
3.
Cell Cycle ; 12(17): 2876-87, 2013 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-23966160

RESUMEN

Many pharmaceuticals used to treat cancer target the cell cycle or mitotic spindle dynamics, such as the anti-tumor drug, paclitaxel, which stabilizes microtubules. Here we show that, in cells arrested in mitosis with the spindle toxins, nocodazole, or paclitaxel, the endogenous protein phosphatase 4 (Ppp4) complex Ppp4c-R2-R3A is phosphorylated on its regulatory (R) subunits, and its activity is inhibited. The phosphorylations are blocked by roscovitine, indicating that they may be mediated by Cdk1-cyclin B. Endogenous Ppp4c is enriched at the centrosomes in the absence and presence of paclitaxel, nocodazole, or roscovitine, and the activity of endogenous Ppp4c-R2-R3A is inhibited from G 1/S to the G 2/M phase of the cell cycle. Endogenous γ-tubulin and its associated protein, γ-tubulin complex protein 2, both of which are essential for nucleation of microtubules at centrosomes, interact with the Ppp4 complex. Recombinant γ-tubulin can be phosphorylated by Cdk1-cyclin B or Brsk1 and dephosphorylated by Ppp4c-R2-R3A in vitro. The data indicate that Ppp4c-R2-R3A regulates microtubule organization at centrosomes during cell division in response to stress signals such as spindle toxins, paclitaxel, and nocodazole, and that inhibition of the Ppp4 complex may be advantageous for treatment of some cancers.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Huso Acromático/metabolismo , Tubulina (Proteína)/metabolismo , Secuencia de Aminoácidos , Ciclo Celular/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Células HEK293 , Células HeLa , Humanos , Modelos Biológicos , Datos de Secuencia Molecular , Nocodazol/farmacología , Fosfoproteínas Fosfatasas/química , Fosforilación/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Mapeo de Interacción de Proteínas , Inhibidores de Proteínas Quinasas/farmacología , Subunidades de Proteína/metabolismo , Huso Acromático/efectos de los fármacos , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo
4.
Diabetes ; 62(12): 4070-82, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23990365

RESUMEN

The liver responds to an increase in blood glucose levels in the postprandial state by uptake of glucose and conversion to glycogen. Liver glycogen synthase (GYS2), a key enzyme in glycogen synthesis, is controlled by a complex interplay between the allosteric activator glucose-6-phosphate (G6P) and reversible phosphorylation through glycogen synthase kinase-3 and the glycogen-associated form of protein phosphatase 1. Here, we initially performed mutagenesis analysis and identified a key residue (Arg(582)) required for activation of GYS2 by G6P. We then used GYS2 Arg(582)Ala knockin (+/R582A) mice in which G6P-mediated GYS2 activation had been profoundly impaired (60-70%), while sparing regulation through reversible phosphorylation. R582A mutant-expressing hepatocytes showed significantly reduced glycogen synthesis with glucose and insulin or glucokinase activator, which resulted in channeling glucose/G6P toward glycolysis and lipid synthesis. GYS2(+/R582A) mice were modestly glucose intolerant and displayed significantly reduced glycogen accumulation with feeding or glucose load in vivo. These data show that G6P-mediated activation of GYS2 plays a key role in controlling glycogen synthesis and hepatic glucose-G6P flux control and thus whole-body glucose homeostasis.


Asunto(s)
Glucosa-6-Fosfato/metabolismo , Glucógeno Sintasa/metabolismo , Hepatocitos/metabolismo , Glucógeno Hepático/biosíntesis , Hígado/metabolismo , Animales , Glucemia/metabolismo , Glucosa/farmacología , Glucógeno Sintasa/genética , Hepatocitos/efectos de los fármacos , Homeostasis/efectos de los fármacos , Homeostasis/fisiología , Insulina/farmacología , Hígado/efectos de los fármacos , Ratones , Ratones Transgénicos , Músculo Esquelético/metabolismo , Fosforilación
5.
Cell Signal ; 24(11): 2085-94, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22796189

RESUMEN

PCTAIRE-1 (cyclin-dependent kinase [CDK] 16) is a highly conserved serine/threonine kinase that belongs to the CDK family of protein kinases. Little is known regarding PCTAIRE-1 regulation and function and no robust assay exists to assess PCTAIRE-1 activity mainly due to a lack of information regarding its preferred consensus motif and the lack of bona fide substrates. We used positional scanning peptide library technology and identified the substrate-specificity requirements of PCTAIRE-1 and subsequently elaborated a peptide substrate termed PCTAIRE-tide. Recombinant PCTAIRE-1 displayed vastly improved enzyme kinetics on PCTAIRE-tide compared to a widely used generic CDK substrate peptide. PCTAIRE-tide also greatly improved detection of endogenous PCTAIRE-1 activity. Similar to other CDKs, PCTAIRE-1 requires a proline residue immediately C-terminal to the phosphoacceptor site (+1) for optimal activity. PCTAIRE-1 has a unique preference for a basic residue at +4, but not at +3 position (a key characteristic for CDKs). We also demonstrate that PCTAIRE-1 binds to a novel cyclin family member, cyclin Y, which increased PCTAIRE-1 activity towards PCTAIRE-tide >100-fold. We hypothesised that cyclin Y binds and activates PCTAIRE-1 in a way similar to which cyclin A2 binds and activates CDK2. Point mutants of cyclin Y predicted to disrupt PCTAIRE-1-cyclin Y binding severely prevented complex formation and activation of PCTAIRE-1. We have identified PCTAIRE-tide as a powerful tool to study the regulation of PCTAIRE-1. Our understanding of the molecular interaction between PCTAIRE-1 and cyclin Y further facilitates future investigation of the functions of PCTAIRE-1 kinase.


Asunto(s)
Quinasas Ciclina-Dependientes/metabolismo , Ciclinas/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Quinasas Ciclina-Dependientes/química , Quinasas Ciclina-Dependientes/genética , Ciclinas/genética , Células HEK293 , Humanos , Cinética , Mutación , Biblioteca de Péptidos , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Transfección
6.
Science ; 336(6083): 918-22, 2012 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-22517326

RESUMEN

Salicylate, a plant product, has been in medicinal use since ancient times. More recently, it has been replaced by synthetic derivatives such as aspirin and salsalate, both of which are rapidly broken down to salicylate in vivo. At concentrations reached in plasma after administration of salsalate or of aspirin at high doses, salicylate activates adenosine monophosphate-activated protein kinase (AMPK), a central regulator of cell growth and metabolism. Salicylate binds at the same site as the synthetic activator A-769662 to cause allosteric activation and inhibition of dephosphorylation of the activating phosphorylation site, threonine-172. In AMPK knockout mice, effects of salicylate to increase fat utilization and to lower plasma fatty acids in vivo were lost. Our results suggest that AMPK activation could explain some beneficial effects of salsalate and aspirin in humans.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Salicilatos/metabolismo , Salicilatos/farmacología , Proteínas Quinasas Activadas por AMP/genética , Sustitución de Aminoácidos , Animales , Aspirina/farmacología , Sitios de Unión , Compuestos de Bifenilo , Metabolismo de los Hidratos de Carbono/efectos de los fármacos , Línea Celular , Activación Enzimática , Activadores de Enzimas/farmacología , Células HEK293 , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Ratones , Ratones Noqueados , Mutación , Consumo de Oxígeno/efectos de los fármacos , Fosforilación , Pironas/farmacología , Ratas , Salicilatos/sangre , Tiofenos/farmacología
7.
Cell Signal ; 23(1): 114-24, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20801214

RESUMEN

Activation of 5'-AMP-activated protein kinase (AMPK) is believed to be the mechanism by which the pharmaceuticals, metformin and phenformin, exert their beneficial effects for treatment of type 2 diabetes. These biguanide drugs elevate 5'-AMP, which allosterically activates AMPK and promotes phosphorylation on Thr172 of AMPK catalytic α subunits. Although kinases phosphorylating this site have been identified, phosphatases that dephosphorylate it are unknown. The aim of this study is to identify protein phosphatase(s) that dephosphorylate AMPKα-Thr172 within cells. Our initial data indicated that members of the protein phosphatase Mg/Mn(2+)-dependent [corrected] (PPM) family and not those of the PPP family of protein serine/threonine phosphatases may be directly or indirectly inhibited by phenformin. Using antibodies raised to individual Ppm phosphatases that facilitated the assessment of their activities, phenformin stimulation of cells was found to decrease the Mg(2+)/Mn(2+)-dependent [corrected] protein serine/threonine phosphatase activity of Ppm1E and Ppm1F, but not that attributable to other PPM family members, including Ppm1A/PP2Cα. Depletion of Ppm1E, but not Ppm1A, using lentiviral-mediated stable gene silencing, increased AMPKα-Thr172 phosphorylation approximately three fold in HEK293 cells. In addition, incubation of cells with low concentrations of phenformin and depletion of Ppm1E increased AMPK phosphorylation synergistically. Ppm1E and the closely related Ppm1F interact weakly with AMPK and assays with lysates of cells stably depleted of Ppm1F suggest [corrected] that this phosphatase contributes to dephosphorylation of AMPK. The data indicate that Ppm1E and probably PpM1F are in cellulo AMPK phosphatases and that Ppm1E is a potential anti-diabetic drug target.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Silenciador del Gen , Células HEK293 , Humanos , Fenformina/farmacología , Fosfoproteínas Fosfatasas/genética , Fosforilación , Proteína Fosfatasa 2C , Interferencia de ARN
8.
Plant J ; 47(2): 211-23, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16771775

RESUMEN

Trehalose-6-phosphate is a 'sugar signal' that regulates plant metabolism and development. The Arabidopsis genome encodes trehalose-6-phosphate synthase (TPS) and trehalose-6-phosphatase (TPP) enzymes. It also encodes class II proteins (TPS isoforms 5-11) that contain both TPS-like and TPP-like domains, although whether these have enzymatic activity is unknown. In this paper, we show that TPS5, 6 and 7 are phosphoproteins that bind to 14-3-3 proteins, by using 14-3-3 affinity chromatography, 14-3-3 overlay assays, and by co-immunoprecipitating TPS5 and 14-3-3 isoforms from cell extracts. GST-TPS5 bound to 14-3-3s after in vitro phosphorylation at Ser22 and Thr49 by either mammalian AMP-activated protein kinase (AMPK) or partially purified plant Snf1-related protein kinase 1 (SnRK1s). Dephosphorylation of TPS5, or mutation of either Ser22 or Thr49, abolished binding to 14-3-3s. Ser22 and Thr49 are both conserved in TPS5, 7, 9 and 10. When GST-TPS5 was expressed in human HEK293 cells, Thr49 was phosphorylated in response to 2-deoxyglucose or phenformin, stimuli that activate the AMPK via the upstream kinase LKB1. 2-deoxyglucose stimulated Thr49 phosphorylation of endogenous TPS5 in Arabidopsis cells, whereas phenformin did not. Moreover, extractable SnRK1 activity was increased in Arabidopsis cells in response to 2-deoxyglucose. The plant kinase was inactivated by dephosphorylation and reactivated by phosphorylation with human LKB1, indicating that elements of the SnRK1/AMPK pathway are conserved in Arabidopsis and human cells. We hypothesize that coordinated phosphorylation and 14-3-3 binding of nitrate reductase (NR), 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (F2KP) and class II TPS isoforms mediate responses to signals that activate SnRK1.


Asunto(s)
Proteínas 14-3-3/metabolismo , Arabidopsis/metabolismo , Desoxiglucosa/farmacología , Glucosiltransferasas/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Proteínas Quinasas Activadas por AMP , Alanina/metabolismo , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/metabolismo , Sitios de Unión , Células Cultivadas , Cromatografía de Afinidad , Humanos , Inmunoprecipitación , Complejos Multienzimáticos/metabolismo , Mutación Missense , Fenformina/farmacología , Fosforilación/efectos de los fármacos , Isoformas de Proteínas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Serina/metabolismo , Treonina/metabolismo
9.
FEBS Lett ; 580(16): 4010-4, 2006 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-16806191

RESUMEN

The protein kinase COT/Tpl2 is activated by interleukin-1 (IL-1), TNFalpha and lipopolysaccharide, and its activation by these agonists involves the IkappaB kinase beta (IKKbeta) catalysed phosphorylation of the p105 regulatory subunit. Here, we show that COT activation also requires catalytic subunit phosphorylation, since IL-1beta induced a 5-10-fold activation of a COT mutant unable to bind p105. Activation was paralleled by the phosphorylation of Thr290 and Ser62 and unaffected by the IKKbeta inhibitor PS1145 at concentrations which prevented the degradation of IkappaBalpha. Mutagenesis experiments indicated that COT activation is initiated by Thr290 phosphorylation catalysed by an IL-1-stimulated protein kinase distinct from IKKbeta, while Ser62 phosphorylation is an autophosphorylation event required for maximal activation.


Asunto(s)
Dominio Catalítico/efectos de los fármacos , Interleucina-1/farmacología , Quinasas Quinasa Quinasa PAM/metabolismo , Fosfoserina/metabolismo , Fosfotreonina/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Secuencia de Aminoácidos , Activación Enzimática/efectos de los fármacos , Humanos , Quinasas Quinasa Quinasa PAM/química , Espectrometría de Masas , Datos de Secuencia Molecular , Mutación/genética , Proteínas Proto-Oncogénicas/química
10.
J Cell Sci ; 116(Pt 10): 1905-13, 2003 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-12668731

RESUMEN

Protein phosphatase 4 (PPP4) is a ubiquitous essential protein serine/threonine phosphatase found in higher eukaryotes. Coordinate variation of the levels of the catalytic subunit (PPP4c) and the regulatory subunit (R2) suggests that PPP4c and R2 form a heterodimeric core to which other regulatory subunits bind. Two proteins that specifically co-purify with Flag-epitope-tagged R2 expressed in HEK-293 cells were identified as Gemin3 and Gemin4. These two proteins have been identified previously as components of the Survival of Motor Neurons (SMN) protein complex, which is functionally defective in the hereditary disorder spinal muscular atrophy. Immuno-sedimentation of the epitope-tagged SMN protein complex from HeLa cells expressing CFP-SMN showed that the SMN protein interacts, as previously reported, with Gemin2 (SIP1), Gemin3 and Gemin4 and in addition associates with PPP4c. The SMN complex has been implicated in the assembly and maturation of small nuclear ribonucleoproteins (snRNPs). Expression of GFP-R2-PPP4c in HeLa cells enhances the temporal localisation of newly formed snRNPs, which is consistent with an association of R2-PPP4c with the SMN protein complex.


Asunto(s)
Proteínas del Tejido Nervioso/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Northern Blotting , Línea Celular , Núcleo Celular/metabolismo , Cromosomas Humanos Par 3/ultraestructura , Cromosomas Humanos Par 5/ultraestructura , Cuerpos Enrollados/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Proteína 20 DEAD-Box , ARN Helicasas DEAD-box , ADN Complementario/metabolismo , Dimerización , Electroforesis en Gel de Poliacrilamida , Epítopos , Células HeLa , Humanos , Hibridación Fluorescente in Situ , Microscopía Fluorescente , Antígenos de Histocompatibilidad Menor , Atrofia Muscular Espinal/metabolismo , Proteínas Nucleares/biosíntesis , Plásmidos/metabolismo , Pruebas de Precipitina , Unión Proteica , Estructura Terciaria de Proteína , ARN/metabolismo , ARN Helicasas/biosíntesis , Proteínas de Unión al ARN , Proteínas del Complejo SMN , Factores de Tiempo , Distribución Tisular , Transfección
11.
J Cell Sci ; 115(Pt 1): 195-206, 2002 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-11801737

RESUMEN

Sds22p is a conserved, leucine-rich repeat protein that interacts with the catalytic subunit of protein phosphatase 1 (PP1(C)) and which has been proposed to regulate one or more functions of PP1(C) during mitosis. Here we show that Saccharomyces cerevisiae Sds22p is a largely nuclear protein, most of which is present as a sTable 1:1 complex with yeast PP1(C) (Glc7p). Temperature-sensitive (Ts(-)) S. cerevisiae sds22 mutants show profound chromosome instability at elevated growth temperatures but do not confer a cell cycle stage-specific arrest. In the sds22-6 Ts(-) mutant, nuclear Glc7p is both reduced in level and aberrantly localized at 37 degrees C and the interaction between Glc7p and Sds22p in vitro is reduced at higher temperatures, consistent with the in vivo Ts(-) growth defect. Like some glc7 mutations, sds22-6 can suppress the Ts(-) growth defect associated with ipl1-2, a loss of function mutation in a protein kinase that is known to work in opposition to PP1 on at least two nuclear substrates. This, together with reciprocal genetic interactions between GLC7 and SDS22, suggests that Sds22p functions positively with Glc7p to promote dephosphorylation of nuclear substrates required for faithful transmission of chromosomes during mitosis, and this role is at least partly mediated by effects of Sds22p on the nuclear distribution of Glc7p


Asunto(s)
Núcleo Celular/metabolismo , Cromosomas Fúngicos , Proteínas Fúngicas/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Saccharomyces cerevisiae/enzimología , Proteínas de Schizosaccharomyces pombe , Alelos , Secuencia de Aminoácidos , Western Blotting , Dominio Catalítico , Proteínas de Ciclo Celular , Deleción Cromosómica , Secuencia Conservada , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Leucina/metabolismo , Microscopía Fluorescente , Mutación , Proteínas Nucleares/metabolismo , Plásmidos , Proteína Fosfatasa 1 , Secuencias Repetitivas de Aminoácido , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Temperatura , Transformación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...