RESUMEN
Dexamethasone has a high anti-inflammatory efficacy in treating skin inflammation. However, its use is related to the rebound effect, rosacea, purple, and increased blood glucose levels. Nanotechnology approaches have emerged as strategies for drug delivery due to their advantages in improving therapeutic effects. To reduce dexamethasone-related adverse effects and improve the anti-inflammatory efficacy of treatments, we developed nanocarriers containing this corticosteroid and oleic acid. Nanocapsules and nanoemulsion presented dexamethasone content close to the theoretical value and controlled dexamethasone release in an in vitro assay. Gellan gum-based hydrogels were successfully prepared to employ the nanostructured systems. A permeation study employing porcine skin showed that hydrogels containing non-nanoencapsulated dexamethasone (0.025%) plus oleic acid (3%) or oleic acid (3%) plus dexamethasone (0.025%)-loaded nanocapsules provided a higher amount of dexamethasone in the epidermis compared to non-nanoencapsulated dexamethasone (0.5%). Hydrogels containing oleic acid plus dexamethasone-loaded nanocapsules effectively inhibited mice ear edema (with inhibitions of 89.26 ± 3.77% and 85.11 ± 2.88%, respectively) and inflammatory cell infiltration (with inhibitions of 49.58 ± 4.29% and 27.60 ± 11.70%, respectively). Importantly, the dexamethasone dose employed in hydrogels containing the nanocapsules that effectively inhibited ear edema and cell infiltration was 20-fold lower (0.025%) than that of non-nanoencapsulated dexamethasone (0.5%). Additionally, no adverse effects were observed in preliminary toxicity tests. Our study suggests that nanostructured hydrogel containing a reduced effective dose of dexamethasone could be a promising therapeutic alternative to treat inflammatory disorders with reduced or absent adverse effects. Additionally, testing our formulation in a clinical study on patients with skin inflammatory diseases would be very important to validate our study.
RESUMEN
Irritant contact dermatitis is usually treated with corticosteroids, which cause expressive adverse effects. Sesamol is a phenolic compound with anti-inflammatory and antioxidant properties. This study was designed to evaluate a hydrogel containing sesamol-loaded ethylcellulose nanocapsules for the treatment of irritant contact dermatitis. The nanocapsules presented a size in the nanometric range, a negative zeta potential, a sesamol content close to the theoretical value (1 mg/mL), and a 65% encapsulation efficiency. Nanoencapsulation protected sesamol against UVC-induced degradation and increased the scavenging activity assessed by ABTS and DPPH radicals. The hydrogels were prepared by thickening the nanocapsule suspensions with guar gum (2.5%). The hydrogels maintained the nanometric size of the nanocapsules and a sesamol content of approximately 1 mg/g. The HET-CAM assay classified the hydrogels as nonirritating. The in vitro release of the hydrogel containing sesamol in the nanoencapsulated form demonstrated an initial burst effect followed by a prolonged sesamol release and a lower skin permeation in comparison with the hydrogel containing free sesamol. In addition, it exhibited the best anti-inflammatory effect in the irritant contact dermatitis model induced by croton oil, reducing ear edema and inflammatory cells infiltration, similar to dexamethasone (positive control). Therefore, the hydrogel containing sesamol in the nanoencapsulated form seemed to have a therapeutic potential in treating irritant contact dermatitis.
RESUMEN
Nanotechnological products have been used as strategies to optimize the therapy and minimize the side effects of topical corticoids. The objective of this study was to develop hydrogels by the addition of sclerotium gum to the suspensions of desonide-loaded açai oil-based nanocapsules and to study their biological effect using an animal model of acute skin inflammation. The hydrogels presented a pH compatible with topical application (4.4 to 5.0), nanometric mean diameter (131 to 165 nm), pseudoplastic behavior, and stability under room conditions during 30 days. The in vitro skin permeation/penetration study demonstrated that a higher amount of desonide (p < 0.05) was retained in the epidermis from the nanotechnological-hydrogels (0.33 to 0.36 µg.cm2) in comparison to the commercial gel cream (0.16 µg.cm2). In the dermis, the nanostructured hydrogels promoted a lower DES retention compared to the non-nanostructured formulations (p < 0.05). This result may indicate a smaller amount of drug reaching the bloodstream and, thus, fewer side effects can be expected. Concerning the anti-inflammatory effect, the developed hydrogels reduced both ear edema and inflammatory cell infiltration, showing an effect comparable to the commercially available formulation, which presents twice the drug concentration. The hydrogels developed may be considered a promising approach to treat dermatological disorders.
Asunto(s)
Nanocápsulas , Animales , Antiinflamatorios/uso terapéutico , Desonida/farmacología , Glucocorticoides , HidrogelesRESUMEN
ETHNOPHARMACOLOGICAL RELEVANCE: Cutaneous inflammatory diseases, such as irritant contact dermatitis, are usually treated with topical corticosteroids, which cause systemic and local adverse effects limiting their use. Thus, the discovery of new therapeutic alternatives able to effectively treat skin inflammatory disorders, without causing adverse effects, is urgently needed. AIM OF THE STUDY: To investigate the topical anti-inflammatory effect of oleic acid (OA), a monounsaturated fatty acid, into Pemulen® TR2-based semisolid dosage forms, employing a croton oil-induced irritant contact dermatitis model in mice. MATERIALS AND METHODS: Male Swiss mice were submitted to skin inflammation protocols by acute and repeated applications of croton oil. The anti-inflammatory activity of Pemulen® TR2 hydrogels containing OA was evaluated by assessing oedema, inflammatory cell infiltration, and pro-inflammatory cytokine IL-1ß levels. The mechanisms of action of OA were evaluated using cytokine IL-1ß application or pretreatment with the glucocorticoid antagonist mifepristone. Possible toxic effects of OA were also assessed. RESULTS: Pemulen® TR2 3% OA inhibited the acute ear oedema [maximal inhibition (Imax) = 76.41 ± 5.69%], similarly to dexamethasone (Imax = 84.94 ± 2.16%), and also inhibited ear oedema after repeated croton oil application with Imax = 85.75 ± 3.08%, similar to dexamethasone (Imax = 81.03 ± 4.66%) on the day 7 of the experiment. Croton oil increased myeloperoxidase activity, which was inhibited by Pemulen® TR2 3% OA (Imax = 71.37 ± 10.97%) and by 0.5% dexamethasone (Imax = 96.31 ± 3.73%). Pemulen® TR2 3% OA also prevented the increase in pro-inflammatory cytokine IL-1ß levels induced by croton oil (Imax = 94.18 ± 12.03%), similar to 0.5% dexamethasone (Imax = 87.21 ± 10.58%). Besides, both Pemulen® TR2 3% OA and 0.5% dexamethasone inhibited IL-1ß-induced ear oedema with an Imax of 80.58 ± 2.45% and 77.46 ± 1.92%, respectively. OA and dexamethasone anti-inflammatory effects were prevented by 100% and 91.43 ± 5.43%, respectively, after pretreatment with mifepristone. No adverse effects were related to Pemulen® TR2 3% OA administration. CONCLUSIONS: OA demonstrated anti-inflammatory efficacy similar to dexamethasone, clinically used to treat skin inflammatory conditions, without presenting adverse effects.
Asunto(s)
Antiinflamatorios/farmacología , Dermatitis Irritante/prevención & control , Ácido Oléico/farmacología , Piel/efectos de los fármacos , Administración Cutánea , Animales , Antiinflamatorios/administración & dosificación , Antiinflamatorios/toxicidad , Aceite de Crotón , Dermatitis Irritante/etiología , Dermatitis Irritante/metabolismo , Dermatitis Irritante/patología , Modelos Animales de Enfermedad , Mediadores de Inflamación/metabolismo , Interleucina-1beta/metabolismo , Masculino , Ratones , Ácido Oléico/administración & dosificación , Ácido Oléico/toxicidad , Piel/metabolismo , Piel/patologíaRESUMEN
This study aimed to investigate the feasibility of preparing a hydrogel based on (OMePhSe)2-loaded poly(Æ-caprolactone) nanocapsules using carrageenan gum as a gel-forming agent. Furthermore, the anti-inflammatory action of hydrogel was assessed in an animal model of skin lesion induced by ultraviolet B (UVB) radiation in mice. Nanocapsules were prepared using the interfacial deposition of preformed polymer technique. The hydrogels were obtained by the direct addition of nanocapsules suspension in carrageenan gum (3%). Formulations with free compound, vehicle, and blank nanocapsules were also produced. The hydrogels were characterized by pH, compound content, diameter, spreadability, rheological behavior, and permeation profile. The pharmacological performance was assessed in an animal model of skin injury induced by UVB-radiation in male Swiss mice. All hydrogels had pH around 7.0, compound content close to the theoretical value (2.5 mg/g), an average diameter in nanometric range (around 350 nm), non-Newtonian flow with pseudoplastic behavior, and suitable spreadability factor. The nano-based hydrogel increased the compound content in the epidermis and dermis layers in comparison to the formulation prepared with non-encapsulated (OMePhSe)2. Stability studies revealed that the hydrogels of nanoencapsulated compound had superior physicochemical stability in comparison to the formulation of free (OMePhSe)2. Moreover, topical treatment with the hydrogel containing (OMePhSe)2 loaded-nanocapsules was more effective in reducing ear thickness and the inflammatory process induced by UVB radiation in mice. Herein, a polysaccharide was applied as a gel-forming agent using a simple and low-cost method. Besides, a superior permeation profile and improved pharmacological action were achieved by the compound encapsulation.
Asunto(s)
Nanocápsulas , Compuestos de Organoselenio , Animales , Antiinflamatorios/uso terapéutico , Carragenina , Hidrogeles , Masculino , RatonesRESUMEN
BACKGROUND: Ultraviolet B (UVB) radiation exposure promotes sunburn and thereby acute and chronic inflammatory processes, contributing to pain development and maintenance. New therapeutic alternatives are necessary because typical treatments can cause adverse effects. An attractive alternative would be to target the transient receptor potential ankyrin 1 (TRPA1), a calcium-permeable, non-selective cation channel, which is involved in a variety of inflammatory pain models. OBJECTIVE: Evaluate the peripheral participation of TRPA1 using a topical treatment (HC030031 gel formulation; a selective TRPA1 antagonist) in nociception and inflammation caused by a UVB radiation-induced burn model in male mice (25-30 g). METHODS: The mice were anaesthetised, and just the right hind paw was exposed to UVB radiation (0.75 J/cm2). Topical treatments were applied immediately after irradiation and once a day for 8 days. RESULTS: HC030031 gel presented suitable pH and spreadability factor, ensuring its quality and the therapeutic effect. HC030031 0.05 % reversed UVB-induced mechanical and cold allodynia, with maximum inhibition (Imax) of 69 ± 13 % and 100 % (on day 4), respectively. HC030031 0.05 % also reduced the paw edema and MPO activity, with Imax of 77 ± 6 % (on day 5) and 69 ± 28 %, respectively. Likewise, UVB radiation increased the H2O2 levels (a TRPA1 agonist) and the Ca2+ influx in mice spinal cord synaptosomes. UVB radiation-induced Ca2+ influx was reduced by HC030031. CONCLUSION: These findings confirm the activation of the TRPA1 channel by UVB radiation, suggesting that topical TRPA1 antagonists can be a new strategy for the adjuvant treatment of sunburn-associated pain and inflammation.
Asunto(s)
Acetanilidas/administración & dosificación , Inflamación/tratamiento farmacológico , Dolor/tratamiento farmacológico , Purinas/administración & dosificación , Quemadura Solar/tratamiento farmacológico , Canal Catiónico TRPA1/antagonistas & inhibidores , Administración Cutánea , Animales , Calcio/metabolismo , Modelos Animales de Enfermedad , Humanos , Peróxido de Hidrógeno/metabolismo , Inflamación/etiología , Masculino , Ratones , Nocicepción/efectos de los fármacos , Dolor/etiología , Dolor/patología , Piel/inmunología , Piel/patología , Piel/efectos de la radiación , Médula Espinal/citología , Médula Espinal/patología , Quemadura Solar/etiología , Quemadura Solar/patología , Sinaptosomas/metabolismo , Canal Catiónico TRPA1/metabolismo , Rayos Ultravioleta/efectos adversosRESUMEN
The treatment of cutaneous inflammation with topical corticosteroids may cause adverse effects reinforcing the need for therapeutic alternatives to treat inflammatory skin disorders. We investigated the anti-inflammatory effect of oleic acid (OA), a fatty acid of the omega-9 (ω-9) family, and we point out it as an alternative to treat inflammatory skin disorders. OA was incorporated into Lanette®- or Pemulen® TR2-based semisolid preparations and the pH, spreadability, rheological behavior and in vivo anti-inflammatory performance in a UVB radiation-induced skin inflammation model in mice were assessed. The anti-inflammatory activity was verified after single or repeated treatment of the mouse ear following the UVB. The OA action on glucocorticoid receptors was investigated. Both semisolids presented pH values compatible with the deeper skin layers, appropriate spreadability factors, and non-Newtonian pseudoplastic rheological behavior. Pemulen® 3% OA inhibited ear edema with superior efficacy than Lanette® 3% OA and dexamethasone after a single treatment. Pemulen® 3% OA and dexamethasone also reduced inflammatory cell infiltration. After repeated treatments, all formulations decreased the ear edema at 24 h, 48 h and 72 h after UVB. OA in semisolids, especially Pemulen® TR2-based ones, presented suitable characteristics for cutaneous administration and its anti-inflammatory activity seems to occur via glucocorticoid receptors. OA was also capable to reduce croton oil-induced skin inflammation. Besides, the ex vivo skin permeation study indicated that OA reaches the receptor medium, which correlates with a systemic absorption in vivo. The natural compound OA could represent a promising alternative to those available to treat inflammatory skin disorders.
Asunto(s)
Antiinflamatorios/farmacología , Inflamación/tratamiento farmacológico , Ácido Oléico/farmacología , Receptores de Glucocorticoides/metabolismo , Piel/efectos de los fármacos , Rayos Ultravioleta/efectos adversos , Administración Cutánea , Animales , Dermatitis/tratamiento farmacológico , Dermatitis/metabolismo , Edema/tratamiento farmacológico , Edema/metabolismo , Inflamación/metabolismo , Masculino , Ratones , Piel/metabolismoRESUMEN
The current study developed an innovative Pemulen® TR2 hydrogel containing silibinin-loaded pomegranate oil-based nanocapsules (HP-NC SB) intending cutaneous application. The formulation anti-inflammatory activity in an in vivo model and biometric studies on the skin of healthy volunteers were also performed. The nanocapsules were prepared using the interfacial deposition of preformed polymer technique and the hydrogels were obtained by thickening of nanocapsules suspension with Pemulen® TR2. Formulations with free compound, vehicle and blank nanocapsules were also produced. The hydrogels were evaluated concerning pH, silibinin content, particle size, spreadability profile, rheology, in vitro drug release, cutaneous permeation, bioadhesive potential and cutaneous biometry evaluation. Furthermore, a model of contact dermatitis croton oil-induced in mice was performed to evaluate the hydrogels anti-inflammatory potential. The formulations presented adequate characteristics for skin administration: particle within nanometric size, pH values in the acid range, silibinin content close theoretical values (1â¯mg/g) and non-Newtonian pseudoplastic behavior. Nano-based hydrogels showed high bioadhesive properties, increased silibinin in vitro release profile and its retention in the stratum corneum. The best anti-inflammatory effect was exhibited by HP-NC SB, which reduced both ear edema and inflammatory cells infiltration in comparison to the induced group. Furthermore, cutaneous biometric evaluation showed that formulations containing free or nanoencapsulated silibinin caused no modification in normal skin conditions (pH, tissue hydration, transepidermal water loss and erythema). In summary, the results demonstrated that the Pemulen® TR2 hydrogel containing NC SB was successfully developed, indicating its potential as an alternative treatment for irritant contact dermatitis.