Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Nat Chem Biol ; 20(7): 835-846, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38287154

RESUMEN

Synchronized ferroptosis contributes to nephron loss in acute kidney injury (AKI). However, the propagation signals and the underlying mechanisms of the synchronized ferroptosis for renal tubular injury remain unresolved. Here we report that platelet-activating factor (PAF) and PAF-like phospholipids (PAF-LPLs) mediated synchronized ferroptosis and contributed to AKI. The emergence of PAF and PAF-LPLs in ferroptosis caused the instability of biomembranes and signaled the cell death of neighboring cells. This cascade could be suppressed by PAF-acetylhydrolase (II) (PAFAH2) or by addition of antibodies against PAF. Genetic knockout or pharmacological inhibition of PAFAH2 increased PAF production, augmented synchronized ferroptosis and exacerbated ischemia/reperfusion (I/R)-induced AKI. Notably, intravenous administration of wild-type PAFAH2 protein, but not its enzymatically inactive mutants, prevented synchronized tubular cell death, nephron loss and AKI. Our findings offer an insight into the mechanisms of synchronized ferroptosis and suggest a possibility for the preventive intervention of AKI.


Asunto(s)
Lesión Renal Aguda , Ferroptosis , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/patología , Lesión Renal Aguda/tratamiento farmacológico , Ferroptosis/efectos de los fármacos , Animales , Ratones , Ratones Endogámicos C57BL , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Factor de Activación Plaquetaria/metabolismo , Ratones Noqueados , Humanos , Masculino
3.
Adv Sci (Weinh) ; 10(36): e2303545, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37963851

RESUMEN

O-GlcNAcylation functions as a cellular nutrient and stress sensor and participates in almost all cellular processes. However, it remains unclear whether O-GlcNAcylation plays a role in the establishment and maintenance of cell polarity, because mice lacking O-GlcNAc transferase (OGT) are embryonically lethal. Here, a mild Ogt knockout mouse model is constructed and the important role of O-GlcNAcylation in establishing and maintaining cell polarity is demonstrated. Ogt knockout leads to severe pulmonary fibrosis and dramatically promotes epithelial-to-mesenchymal transition. Mechanistic studies reveal that OGT interacts with pericentriolar material 1 (PCM1) and centrosomal protein 131 (CEP131), components of centriolar satellites required for anchoring microtubules to the centrosome. These data further show that O-GlcNAcylation of PCM1 and CEP131 promotes their centrosomal localization through phase separation. Decrease in O-GlcNAcylation prevents PCM1 and CEP131 from localizing to the centrosome, instead dispersing these proteins throughout the cell and impairing the microtubule-centrosome interaction to disrupt centrosome positioning and cell polarity. These findings identify a previously unrecognized role for protein O-GlcNAcylation in establishing and maintaining cell polarity with important implications for the pathogenesis of pulmonary fibrosis.


Asunto(s)
Fibrosis Pulmonar , Ratones , Animales , Fibrosis Pulmonar/metabolismo , Polaridad Celular , Centrosoma/metabolismo , Fenotipo
4.
J Nutr Biochem ; 111: 109182, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36220525

RESUMEN

Hypoxic pulmonary hypertension (HPH) is a cardiopulmonary disease featured by pulmonary vascular remodeling, which is due to abnormal proliferation of pulmonary artery smooth muscle cells (PASMCs) and dysfunction of endothelial cells (ECs). Sulforaphane (SFN) is a natural isothiocyanate extracted from cruciferous vegetables with promising anti-inflammatory and anti-oxidative activities. This study aimed to explore the effect and mechanism of SFN on HPH. Male mice were exposed to persistent chronic hypoxia for 4 weeks to induce HPH. The results demonstrated that SFN repressed the increased right ventricular systolic pressure (RVSP) and attenuated the right ventricular hypertrophy and pulmonary arteries remodeling in HPH mice. In particular, after SFN treatment, the CD68 positive cells in lung sections were reduced; TNF-α and IL-6 levels in lungs and serum declined; activation of NF-κB in PASMCs was inhibited in response to hypoxia. Besides, SFN enhanced the superoxide dismutase (SOD) activity in serum, SOD2 expression, total glutathione levels, and GSH/GSSG ratio in PASMCs, along with a decrease in malondialdehyde (MDA) contents in serum and ROS production in PASMCs after hypoxia exposure. Notably, SFN, as an Nrf2 activator, reversed the reduction in Nrf2 expression in hypoxic PASMCs. In vitro, SFN treatment inhibited hyperproliferation and promoted apoptosis of PASMCs under hypoxia conditions. SFN also prevented the apoptosis of pulmonary microvascular ECs caused by hypoxia. Therefore, these data suggested that SFN could significantly restrain the inflammation and oxidative stress, thereby inhibiting PASMCs proliferation, promoting PASMCs apoptosis, and reversing hypoxia injury in ECs to improve pulmonary vascular remodeling.


Asunto(s)
Hipertensión Pulmonar , Animales , Masculino , Ratones , Proliferación Celular , Células Endoteliales/metabolismo , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/metabolismo , Hipoxia/tratamiento farmacológico , Hipoxia/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Isotiocianatos/farmacología , Isotiocianatos/uso terapéutico , Miocitos del Músculo Liso , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Arteria Pulmonar , Remodelación Vascular
5.
Elife ; 102021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33942716

RESUMEN

Erythropoietin (EPO) drives erythropoiesis and is secreted mainly by the kidney upon hypoxic or anemic stress. The paucity of EPO production in renal EPO-producing cells (REPs) causes renal anemia, one of the most common complications of chronic nephropathies. Although mitochondrial dysfunction is commonly observed in several renal and hematopoietic disorders, the mechanism by which mitochondrial quality control impacts renal anemia remains elusive. In this study, we showed that FUNDC1, a mitophagy receptor, plays a critical role in EPO-driven erythropoiesis induced by stresses. Mechanistically, EPO production is impaired in REPs in Fundc1-/- mice upon stresses, and the impairment is caused by the accumulation of damaged mitochondria, which consequently leads to the elevation of the reactive oxygen species (ROS) level and triggers inflammatory responses by up-regulating proinflammatory cytokines. These inflammatory factors promote the myofibroblastic transformation of REPs, resulting in the reduction of EPO production. We therefore provide a link between aberrant mitophagy and deficient EPO generation in renal anemia. Our results also suggest that the mitochondrial quality control safeguards REPs under stresses, which may serve as a potential therapeutic strategy for the treatment of renal anemia.


Asunto(s)
Anemia/prevención & control , Eritropoyetina/metabolismo , Regulación de la Expresión Génica , Enfermedades Renales/prevención & control , Proteínas de la Membrana/genética , Proteínas Mitocondriales/genética , Mitofagia/genética , Animales , Eritropoyesis/genética , Eritropoyesis/fisiología , Eritropoyetina/análisis , Eritropoyetina/genética , Enfermedades Renales/clasificación , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas Mitocondriales/metabolismo , Mitofagia/fisiología , Especies Reactivas de Oxígeno
6.
Cancer Sci ; 112(2): 604-618, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33090636

RESUMEN

Glioblastoma (GBM) recurrence is attributed to the presence of therapy-resistant glioblastoma stem cells. Steroid receptor coactivator-1 (SRC-1) acts as an oncogenic regulator in many human tumors. The relationship between SRC-1 and GBM has not yet been studied. Herein, we investigate the role of SRC-1 in GBM. In this study, we found that SRC-1 expression is positively correlated with grades of glioma and inversely correlated with glioma patient's prognosis. Steroid receptor coactivator-1 promotes the proliferation, migration, and tumor growth of GBM cells. Notably, SRC-1 knockdown suppresses the stemness of GBM cells. Mechanistically, long noncoding RNA X-inactive specific transcript (XIST) is regulated by SRC-1 at the posttranscriptional level and mediates the function of SRC-1 in promoting stemness-like properties of GBM. Steroid receptor coactivator-1 can promote the expression of Kruppel-like factor 4 (KLF4) through the XIST/microRNA (miR)-152 axis. Additionally, arenobufagin and bufalin, SRC small molecule inhibitors, can reduce the proliferation and stemness of GBM cells. This study reveals SRC-1 promotes the stemness of GBM by activating the long noncoding RNA XIST/miR-152/KLF4 pathway and provides novel markers for diagnosis and therapy of GBM.


Asunto(s)
Neoplasias Encefálicas/patología , Regulación Neoplásica de la Expresión Génica/fisiología , Glioblastoma/patología , Coactivador 1 de Receptor Nuclear/metabolismo , Animales , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Proliferación Celular/genética , Glioblastoma/genética , Glioblastoma/metabolismo , Xenoinjertos , Humanos , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Ratas , Ratas Wistar , Transducción de Señal/fisiología
7.
Arterioscler Thromb Vasc Biol ; 39(1): 48-62, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30580569

RESUMEN

Objective- Hypoxic pulmonary hypertension (HPH) is characterized by proliferative vascular remodeling. Abnormal pulmonary artery smooth muscle cells proliferation and endothelial dysfunction are the primary cellular bases of vascular remodeling. AQP1 (aquaporin-1) is regulated by oxygen level and has been observed to play a role in the proliferation and migration of pulmonary artery smooth muscle cells. The role of AQP1 in HPH pathogenesis has not been directly determined to date. To determine the possible roles of AQP1 in the pathogenesis of HPH and explore its possible mechanisms. Approach and Results- Aqp1 knockout mice were used, and HPH model was established in this study. Primary pulmonary artery smooth muscle cells, primary mouse lung endothelial cells, and lung tissue sections from HPH model were used. Immunohistochemistry, immunofluorescence and Western blot, cell cycle, apoptosis, and migration analysis were performed in this study. AQP1 expression was upregulated by chronic hypoxia exposure, both in pulmonary artery endothelia and medial smooth muscle layer of mice. Aqp1 deficiency attenuated the elevation of right ventricular systolic pressures and mitigated pulmonary vascular structure remodeling. AQP1 deletion reduced abnormal cell proliferation in pulmonary artery and accompanied with accumulation of HIF (hypoxia-inducible factor). In vitro, Aqp1 deletion reduced hypoxia-induced proliferation, apoptosis resistance, and migration ability of primary cultured pulmonary artery smooth muscle cells and repressed HIF-1α protein stability. Furthermore, Aqp1 deficiency protected lung endothelial cells from apoptosis in response to hypoxic injury. Conclusions- Our data showed that Aqp1 deficiency could attenuate hypoxia-induced vascular remodeling in the development of HPH. AQP1 may be a potential target for pulmonary hypertension treatment.


Asunto(s)
Acuaporina 1/fisiología , Hipertensión Pulmonar/etiología , Hipoxia/complicaciones , Animales , Acuaporina 1/genética , Células Cultivadas , Ciclina D1/fisiología , Hipertensión Pulmonar/fisiopatología , Subunidad alfa del Factor 1 Inducible por Hipoxia/fisiología , Masculino , Ratones , Ratones Noqueados , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/fisiología , Remodelación Vascular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...