RESUMEN
Photoperiod/thermo-sensitive genic male sterility (P/TGMS) is critical for rice two-line hybrid system. Previous studies showed that slow development of pollen is a general mechanism for sterility-to-fertility conversion of TGMS in Arabidopsis. However, whether this mechanism still exists in rice is unknown. Here, we identified a novel rice TGMS line, ostms16, which exhibits abnormal pollen exine under high temperature and fertility restoration under low temperature. In mutant, a single base mutation of OsTMS16, a fatty acyl-CoA reductase (FAR), reduced its enzyme activity, leading to defective pollen wall. Under high temperature, the mOsTMS16M549I couldn't provide sufficient protection for the microspores. Under low temperature, the enzyme activity of mOsTMS16M549I is closer to that of OsTMS16, so that the imperfect exine could still protect microspore development. These results indicated whether the residual enzyme activity in mutant could meet the requirement in different temperature is a determinant factor for fertility conversion of P/TGMS lines. Additionally, we previously found that res2, the mutant of a polygalacturonase for tetrad pectin wall degradation, restored multiple TGMS lines in Arabidopsis. In this study, we proved that the osres2 in rice restored the fertility of ostms16, indicating the slow development is also suitable for the fertility restoration in rice.
RESUMEN
Uranium is a nuclear fuel but also a hazardous contaminant due to its radioactivity and chemical toxicity. To prevent and mitigate its potential threat, the accurate monitoring of ultratrace uranium (orders of magnitude of pg g-1) in practical environmental samples has become an important scientific problem. To meet this challenge, we developed an efficient electrochemiluminescence (ECL) UO22+ detection device by a novel dual-enhancement mechanism. In detail, poly[(9,9-dioctylfuor-enyl-2,7-diyl)-alt-co-(1,4-benzo-{2,1,3}-thiadiazole)] polymer dots (Pdots) are modified by the UO22+ DNA aptamer, and rhodamine B (RhB) is combined with dsDNA to quench the ECL signal via a resonance energy transfer (RET) process. UO22+ can cut off the DNA aptamer to release RhB, which generates an ECL enhancement process, and then, UO22+ continuously combines with the DNA chain, inducing another ECL enhancement by the RET process from UO22+ to Pdots. This device achieves an ultralow detection limit (12 pg L-1) and a wide linear range (113 pg L-1-11.3 mg L-1), which can successfully give accurate determination results to the ultratrace uranium in biosamples (<1 pg g-1) to monitor the uranium simulation of fish. This work presents an efficient strategy for ultratrace uranium determination in the environment, highlighting its significance in public health and environmental fields.
Asunto(s)
Técnicas Electroquímicas , Peces , Mediciones Luminiscentes , Uranio , Uranio/análisis , Animales , Técnicas Electroquímicas/instrumentación , Técnicas Electroquímicas/métodos , Uñas/química , Aptámeros de Nucleótidos/química , Humanos , Polímeros/química , Límite de Detección , Puntos Cuánticos/químicaRESUMEN
We designed 6-dimethylamino 3-methyleneisoindolin-1-one as an environment-sensitive fluorophore, examining its applications for protein labeling. Synthesized 3-methyleneisoindolin-1-one exhibits solvatochromic fluorescence (λemmax; 472 nm in 2-PrOH, 512 nm in H2O). A positive linear dependence between λemmax and solvent dielectric constant (DC), as well as between Stokes shift and DC, and a negative correlation between fluorescence quantum yield and DC are observed in protic solvents. These properties are similar to those of the oxygen isosteric fluorophore, 4-dimethylaminophthalimide, a slovatochromic fluorophore utilized for labeling oligodeoxynucleotides (ODNs) and peptides. Notably, fluorescence intensity of 3-methyleneisoindolin-1-one is higher than the phthalimide in protic solvents used in this study. The 3-methyleneisoindolin-1-one demonstrated the higher stability in pH 8 solution than in pH 6 solution in contrast to the stability profile of the phthalimide, which was stable at pH 6 but was hydrolyzed at pH 8. We also synthesized an o-keto benzaldehyde derivative that converts a primary amine to 6-dimethylamino 3-methyleneisoindolin-1-one under biocompatible conditions and introduced it into ODNs for turn-on fluorescent protein labeling. The synthesized ODN with a protein-binding sequence of Escherichia coli DnaA was employed to modify the DNA-binding domain of DnaA, and the fluorescent properties of the modified protein were investigated.
Asunto(s)
Colorantes Fluorescentes , Isoindoles , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Isoindoles/química , Isoindoles/síntesis química , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , ADN/química , Diseño de Fármacos , Estructura Molecular , Concentración de Iones de HidrógenoRESUMEN
PURPOSE: Current research suggests that oxidative stress may decrease bone mineral density (BMD) by disrupting bone metabolism balance. However, no study investigated the relationship between systemic oxidative stress status and adult BMD. This study aims to investigate whether oxidative balance score (OBS) is associated with BMD in adults under 40. METHODS: 3963 participants were selected from the National Health and Nutrition Survey (NHANES) from 2011 to 2018. OBS is scored based on 20 dietary and lifestyle factors. Weighted multiple logistic regression and restricted cubic splines were used to assess the correlation between OBS and osteopenia. RESULTS: After adjusting for confounding factors, the weighted logistic regression results showed that compared with the first tertile of OBS, the highest tertile had a 38% (OR: 0.62, 95% CI: 0.47-0.82) lower risk of osteopenia. The restrictive cubic spline curve indicates a significant nonlinear correlation between OBS and the risk of osteopenia. CONCLUSION: The research findings emphasize the relationship between OBS and the risk of osteopenia in young adults. Adopting an antioxidant diet and lifestyle may help young adults to maintain bone mass.
Asunto(s)
Densidad Ósea , Enfermedades Óseas Metabólicas , Vértebras Lumbares , Encuestas Nutricionales , Estrés Oxidativo , Humanos , Enfermedades Óseas Metabólicas/epidemiología , Adulto , Femenino , Masculino , Estrés Oxidativo/fisiología , Densidad Ósea/fisiología , Adulto JovenRESUMEN
OBJECT: The study aims to determine whether multimorbidity status is associated with cerebrospinal fluid (CSF) biomarkers for neurodegenerative disorders. METHODS: A total of 827 patients were enrolled from the Parkinson's Progression Markers Initiative (PPMI) database, including 638 patients with early-stage Parkinson's disease (PD) and 189 healthy controls (HCs). Multimorbidity status was evaluated based on the count of long-term conditions (LTCs) and the multimorbidity pattern. Using linear regression models, cross-sectional and longitudinal analyses were conducted to assess the associations of multimorbidity status with CSF biomarkers for neurodegenerative disorders, including α-synuclein (αSyn), amyloid-ß42 (Aß42), total tau (t-tau), phosphorylated tau (p-tau), glial fibrillary acidic protein (GFAP), and neurofilament light chain protein (NfL). RESULTS: At baseline, the CSF t-tau (p = 0.010), p-tau (p = 0.034), and NfL (p = 0.049) levels showed significant differences across the three categories of LTC counts. In the longitudinal analysis, the presence of LTCs was associated with lower Aß42 (ß < -0.001, p = 0.020), and higher t-tau (ß = 0.007, p = 0.026), GFAP (ß = 0.013, p = 0.022) and NfL (ß = 0.020, p = 0.012); Participants with tumor/musculoskeletal/mental disorders showed higher CSF levels of t-tau (ß = 0.016, p = 0.011) and p-tau (ß = 0.032, p = 0.044) than those without multimorbidity. CONCLUSION: Multimorbidity, especially severe multimorbidity and the pattern of mental/musculoskeletal/ tumor disorders, was associated with CSF biomarkers for neurodegenerative disorders in early-stage PD patients, suggesting that multimorbidity might play a crucial role in aggravating neuronal damage in neurodegenerative diseases.
Asunto(s)
Péptidos beta-Amiloides , Biomarcadores , Multimorbilidad , Enfermedad de Parkinson , Proteínas tau , Humanos , Enfermedad de Parkinson/líquido cefalorraquídeo , Enfermedad de Parkinson/epidemiología , Masculino , Femenino , Biomarcadores/líquido cefalorraquídeo , Estudios Longitudinales , Estudios Transversales , Persona de Mediana Edad , Proteínas tau/líquido cefalorraquídeo , Anciano , Péptidos beta-Amiloides/líquido cefalorraquídeo , Enfermedades Neurodegenerativas/líquido cefalorraquídeo , Enfermedades Neurodegenerativas/epidemiología , Fragmentos de Péptidos/líquido cefalorraquídeo , alfa-Sinucleína/líquido cefalorraquídeo , Proteínas de Neurofilamentos/líquido cefalorraquídeoRESUMEN
The identification of structural variants (SVs) in genomic data represents an ongoing challenge because of difficulties in reliable SV calling leading to reduced sensitivity and specificity. We prepared high-quality DNA from 9 parent-child trios, who had previously undergone short-read whole-genome sequencing (Illumina platform) as part of the Genomics England 100,000 Genomes Project. We reanalysed the genomes using both Bionano optical genome mapping (OGM; 8 probands and one trio) and Nanopore long-read sequencing (Oxford Nanopore Technologies [ONT] platform; all samples). To establish a "truth" dataset, we asked whether rare proband SV calls (n = 234) made by the Bionano Access (version 1.6.1)/Solve software (version 3.6.1_11162020) could be verified by individual visualisation using the Integrative Genomics Viewer with either or both of the Illumina and ONT raw sequence. Of these, 222 calls were verified, indicating that Bionano OGM calls have high precision (positive predictive value 95%). We then asked what proportion of the 222 true Bionano SVs had been identified by SV callers in the other two datasets. In the Illumina dataset, sensitivity varied according to variant type, being high for deletions (115/134; 86%) but poor for insertions (13/58; 22%). In the ONT dataset, sensitivity was generally poor using the original Sniffles variant caller (48% overall) but improved substantially with use of Sniffles2 (36/40; 90% and 17/23; 74% for deletions and insertions, respectively). In summary, we show that the precision of OGM is very high. In addition, when applying the Sniffles2 caller, the sensitivity of SV calling using ONT long-read sequence data outperforms Illumina sequencing for most SV types.
Asunto(s)
Benchmarking , Secuenciación de Nanoporos , Secuenciación Completa del Genoma , Humanos , Secuenciación Completa del Genoma/métodos , Secuenciación Completa del Genoma/normas , Secuenciación de Nanoporos/métodos , Benchmarking/métodos , Variación Estructural del Genoma/genética , Mapeo Cromosómico/métodos , Genoma Humano/genética , Genómica/métodos , Programas Informáticos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/normas , Femenino , Nanoporos , Masculino , Análisis de Secuencia de ADN/métodos , Análisis de Secuencia de ADN/normasRESUMEN
Copper as a widely applied element in food supply chain can cause serious contamination issues that threats food safety. In this research, we present a quick and visible method for trace copper ion (Cu2+) quantification in practical food samples. Polymer dots (Pdots) were firstly conjugated with a copper-specific DNA aptamer and then tailored with rhodamine B (RhB) to extinguish the electrochemiluminescence (ECL) signal through a resonance energy transfer process. The selective release of RhB leads to signal restoration when exposed to trace Cu2+ levels, achieving remarkable linearity with the logarithm of Cu2+ concentration within the range of 1 ng/L to 10 µg/L with an impressively low limit of detection at 11.8 pg/L. Most notably, our device was also applicable on visualizing and quantifying trace Cu2+ (â¼0.2 µg/g) in practical Glycyrrhiza uralensis Fisch. samples, underscoring its potential as a tool for the early prevention of potential copper contamination in food samples.
Asunto(s)
Cobre , Técnicas Electroquímicas , Contaminación de Alimentos , Mediciones Luminiscentes , Cobre/análisis , Cobre/química , Contaminación de Alimentos/análisis , Mediciones Luminiscentes/instrumentación , Mediciones Luminiscentes/métodos , Técnicas Electroquímicas/instrumentación , Límite de Detección , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Análisis de los Alimentos/métodos , Aptámeros de Nucleótidos/química , Puntos Cuánticos/químicaRESUMEN
Physical frailty and genetic factors are both risk factors for increased dementia; nevertheless, the joint effect remains unclear. This study aimed to investigated the long-term relationship between physical frailty, genetic risk, and dementia incidence. A total of 274,194 participants from the UK Biobank were included. We applied Cox proportional hazards regression models to estimate the association between physical frailty and genetic and dementia risks. Among the participants (146,574 females [53.45%]; mean age, 57.24 years), 3,353 (1.22%) new-onset dementia events were recorded. Compared to non-frailty, the hazard ratio (HR) for dementia incidence in prefrailty and frailty was 1.396 (95% confidence interval [CI], 1.294-1.506, P < 0.001) and 2.304 (95% CI, 2.030-2.616, P < 0.001), respectively. Compared to non-frailty and low polygenic risk score (PRS), the HR for dementia risk was 3.908 (95% CI, 3.051-5.006, P < 0.001) for frailty and high PRS. Furthermore, among the participants, slow walking speed (HR, 1.817; 95% CI, 1.640-2.014, P < 0.001), low physical activity (HR, 1.719; 95% CI, 1.545-1.912, P < 0.001), exhaustion (HR, 1.670; 95% CI, 1.502-1.856, P < 0.001), low grip strength (HR, 1.606; 95% CI, 1.479-1.744, P < 0.001), and weight loss (HR, 1.464; 95% CI, 1.328-1.615, P < 0.001) were independently associated with dementia risk compared to non-frailty. Particularly, precise modulation for different dementia genetic risk populations can also be identified due to differences in dementia risk resulting from the constitutive pattern of frailty in different genetic risk populations. In conclusion, both physical frailty and high genetic risk are significantly associated with higher dementia risk. Early intervention to modify frailty is beneficial for achieving primary and precise prevention of dementia, especially in those at high genetic risk.
Asunto(s)
Demencia , Fragilidad , Predisposición Genética a la Enfermedad , Humanos , Femenino , Masculino , Demencia/genética , Demencia/epidemiología , Fragilidad/genética , Fragilidad/epidemiología , Persona de Mediana Edad , Estudios Prospectivos , Incidencia , Anciano , Factores de Riesgo , Reino Unido/epidemiología , Modelos de Riesgos ProporcionalesRESUMEN
Background: Cardiovascular Risk Factors, Ageing and Dementia (CAIDE) risk score serves as a credible predictor of an individual's risk of dementia. However, studies on the link of the CAIDE score to Alzheimer's disease (AD) pathology are scarce. Objective: To explore the links of CAIDE score to cerebrospinal fluid (CSF) biomarkers of AD as well as to cognitive performance. Methods: In the Chinese Alzheimer's Biomarker and LifestylE (CABLE) study, we recruited 600 cognitively normal participants. Correlations between the CAIDE score and CSF biomarkers of AD as well as cognitive performance were probed through multiple linear regression models. Whether the correlation between CAIDE score and cognitive performance was mediated by AD pathology was researched by means of mediation analyses. Results: Linear regression analyses illustrated that CAIDE score was positively associated with tau-related biomarkers, including pTau (pâ<â0.001), tTau (pâ<â0.001), as well as tTau/Aß42 (pâ=â0.008), while it was in negative association with cognitive scores, consisting of MMSE score (pâ<â0.001) as well as MoCA score (pâ<â0.001). The correlation from CAIDE score to cognitive scores was in part mediated by tau pathology, with a mediation rate varying from 3.2% to 13.2%. Conclusions: A higher CAIDE score, as demonstrated in our study, was linked to more severe tau pathology and poorer cognitive performance, and tau pathology mediated the link of CAIDE score to cognitive performance. Increased dementia risk will lead to cognitive decline through aggravating neurodegeneration.
Asunto(s)
Enfermedad de Alzheimer , Biomarcadores , Cognición , Proteínas tau , Humanos , Masculino , Femenino , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/psicología , Anciano , Cognición/fisiología , Biomarcadores/líquido cefalorraquídeo , Proteínas tau/líquido cefalorraquídeo , Persona de Mediana Edad , Péptidos beta-Amiloides/líquido cefalorraquídeo , Envejecimiento/psicología , Factores de Riesgo , Pruebas Neuropsicológicas/estadística & datos numéricos , Enfermedades Cardiovasculares , Anciano de 80 o más Años , Fragmentos de Péptidos/líquido cefalorraquídeoRESUMEN
Lysine-specific peptide and protein modification strategies are widely used to study charge-related functions and applications. However, these strategies often result in the loss of the positive charge on lysine, significantly impacting the charge-related properties of proteins. Herein, we report a strategy to preserve the positive charge and selectively convert amines in lysine side chains to amidines using nitriles and hydroxylamine under aqueous conditions. Various unprotected peptides and proteins were successfully modified with a high conversion rate. Moreover, the reactive amidine moiety and derived modification site enable subsequent secondary modifications. Notably, positive charges were retained during the modification. Therefore, positive charge-related protein properties, such as liquid-liquid phase separation behaviour of α-synuclein, were not affected. This strategy was subsequently applied to a lysine rich protein to develop an amidine-containing coacervate DNA complex with outstanding mechanical properties. Overall, our innovative strategy provides a new avenue to explore the characteristics of positively charged proteins.
Asunto(s)
Hidroxilamina , Lisina , Lisina/química , Hidroxilamina/química , Proteínas/química , Amidinas/química , alfa-Sinucleína/química , Péptidos/químicaRESUMEN
In recent years, stem cells and their secretomes, notably exosomes, have received considerable attention in biomedical applications. Exosomes are cellular secretomes used for intercellular communication. They perform the function of intercellular messengers by facilitating the transport of proteins, lipids, nucleic acids, and therapeutic substances. Their biocompatibility, minimal immunogenicity, targetability, stability, and engineerable characteristics have additionally led to their application as drug delivery vehicles. The therapeutic efficacy of exosomes can be improved through surface modification employing functional molecules, including aptamers, antibodies, and peptides. Given their potential as targeted delivery vehicles to enhance the efficiency of treatment while minimizing adverse effects, exosomes exhibit considerable promise. Stem cells are considered advantageous sources of exosomes due to their distinctive characteristics, including regenerative and self-renewal capabilities, which make them well-suited for transplantation into injured tissues, hence promoting tissue regeneration. However, there are notable obstacles that need to be addressed, including immune rejection and ethical problems. Exosomes produced from stem cells have been thoroughly studied as a cell-free strategy that avoids many of the difficulties involved with cell-based therapy for tissue regeneration and cancer treatment. This review provides an in-depth summary and analysis of the existing knowledge regarding exosomes, including their engineering and cardiovascular disease (CVD) treatment applications.
RESUMEN
As electrocatalysts, molecular catalysts with large aromatic systems (such as terpyridine, porphyrin, or phthalocyanine) have been widely applied in the CO2 reduction reaction (CO2RR). However, these monomeric catalysts tend to aggregate due to strong π-π interactions, resulting in limited accessibility of the active site. In light of these challenges, we present a novel strategy of active site isolation for enhancing the CO2RR. Six Ru(Tpy)2 were integrated into the skeleton of a metallo-organic supramolecule by stepwise self-assembly in order to form a rhombus-fused six-pointed star R1 with active site isolation. The turnover frequency (TOF) of R1 was as high as 10.73 s-1 at -0.6 V versus reversible hydrogen electrode (vs RHE), which is the best reported value so far at the same potential to our knowledge. Furthermore, by increasing the connector density on R1's skeleton, a more stable triangle-fused six-pointed star T1 was successfully synthesized. T1 exhibits exceptional stability up to 126 h at -0.4 V vs RHE and excellent TOF values of CO. The strategy of active site isolation and connector density increment significantly enhanced the catalytic activity by increasing the exposure of the active site. This work provides a starting point for the design of molecular catalysts and facilitates the development of a new generation of catalysts with a high catalytic performance.
RESUMEN
BACKGROUND: Anti-synthetase syndrome (AS) is a rare autoimmune idiopathic inflammatory myopathy (IIM) with diverse manifestations, including arthritis, interstitial lung disease (ILD), Raynaud's phenomenon, unexplained persistent fever, and mechanic's hands. CASE PRESENTATION: We present the case of a 72-year-old woman, previously healthy, who was admitted to our hospital for treatment of cough and rapid breathing. The patient had elevated white blood cells and C-reactive protein, and tested negative for severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2). She was initially diagnosed with community-acquired pneumonia and received tamoxifen for anti-infection treatment, but her dystonia worsened. She eventually required non-invasive ventilator support, tested positive for SARS-Cov-2 again, and started antiviral therapy, corticosteroids to reduce alveolar effusion, anticoagulation, and other treatments. However, her condition continued to deteriorate, with the lowest oxygenation index reaching only 80mmHg. Ultimately, she underwent tracheal intubation and mechanical ventilation. Chest CT revealed rapid progressive interstitial changes in her lungs, and her hands showed noticeable fraternization changes. At this point, we suspected that the novel coronavirus infection might be associated with autoimmune diseases. The patient's autoimmune antibody spectrum showed positive results for anti-recombinant RO-52 antibody and myositis-specific antibody anti-alanyl tRNA synthetase (anti-PL-12). The patient was treated with dexamethasone sodium phosphate for anti-inflammatory and anti-fibrotic effects. After successful extubation, the patient was discharged with only oral prednisone tablets at a dose of 30 mg. CONCLUSIONS: This case presents an early diagnosis and successful treatment of anti-synthetase syndrome combined with SARS-Cov-2 infection, emphasizing the importance of comprehensive physical examination. Additionally, it highlights the rapid progression of interstitial lung disease under SARS-Cov-2 infection, which is often difficult to distinguish on imaging. In cases where treatment for SARS-Cov-2 infection is ineffective, early screening for autoimmune diseases is recommended. As there is currently no standardized method for treating AS-ILD, the successful treatment of this case provides a reference for clinical research on anti-synthetase syndrome in the later stage.
Asunto(s)
Enfermedades Autoinmunes , COVID-19 , Enfermedades Pulmonares Intersticiales , Miositis , Humanos , Femenino , Anciano , COVID-19/complicaciones , SARS-CoV-2 , Miositis/complicaciones , Miositis/diagnóstico , Miositis/tratamiento farmacológico , Enfermedades Pulmonares Intersticiales/complicaciones , Enfermedades Pulmonares Intersticiales/diagnóstico , Enfermedades Pulmonares Intersticiales/tratamiento farmacológico , Enfermedades Autoinmunes/complicaciones , AutoanticuerposRESUMEN
This review explains the sources of nanoplastics (NPs) and microplastics (MPs), their release, fate, and associated health risks in the aquatic environment. In the 21st century, scientists are grappling with a major challenge posed by MPs and NPs. The global production of plastic has skyrocketed from 1.5 million tons in the 1950s to an astonishing 390.7 million tons in 2021. This pervasive presence of these materials in our environment has spurred scientific inquiry into their potentially harmful effects on living organisms. Studies have revealed that while MPs, with their larger surface area, are capable of absorbing contaminants and pathogens from the surroundings, NPs can easily be transferred through the food chain. As a result, living organisms may ingest them and accumulate them within their bodies. Due to their minuscule size, NPs are particularly difficult to isolate and quantify. Furthermore, exposure to both NPs and MPs has been linked to various adverse health effects in aquatic species, including neurological impairments, disruption of lipid and energy metabolism, and increased susceptibility to cytotoxicity, oxidative stress, inflammation, and reactive oxygen species (ROS) production. It is alarming to note that MPs have even been detected in commercial fish, highlighting the severity of this issue. There are also challenges associated with elucidating the toxicological effects of NPs and MPs, which are discussed in detail in this review. In conclusion, plastic pollution is a pressing issue that governments should tackle by ensuring proper implementation of rules and regulations at national and provincial levels to reduce its health risks.
Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Animales , Microplásticos/toxicidad , Plásticos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Contaminación Ambiental , Metabolismo EnergéticoRESUMEN
Background: Frailty is a vulnerability state increasing the risk of many adverse health outcomes, but little is known about the effects of frailty on neuropsychiatric health. Objective: To explore the associations between frailty and the risk of neuropsychiatric symptoms (NPSs) in Alzheimer's disease (AD), especially in its different clinical stages. Methods: We included 2,155 individuals assessed using modified frailty index-11 (mFI-11), Neuropsychiatric Inventory (NPI) and Neuropsychiatric Inventory Questionnaire (NPI-Q) in the Alzheimer's Disease Neuroimaging Initiative (ADNI). The relationships between frailty and NPSs were explored with logistic regression models and Cox proportional hazard regression models. Causal mediation analyses were conducted to explore the mediation factors between frailty and NPSs. Results: Among mild cognitive impairment (MCI) participants, frailty was cross-sectionally associated with an increased risk of apathy, and longitudinally associated with increased risk of depression and apathy. Among AD participants, frailty was cross-sectionally associated with increased risk of depression and anxiety, and longitudinally associated with an increased risk of apathy. Among participants with cognitive progression, frailty was associated with increased risk of depression and apathy. In MCI participants, the influence of frailty on NPSs was partially mediated by hippocampus volume, whole brain volume, and monocytes, with mediating proportions ranging from 8.40% to 9.29%. Conclusions: Frailty was associated with NPSs such as depression, anxiety, and apathy among MCI, AD, and cognitive progression participants. Atrophy of the hippocampus and whole brain, as well as peripheral immunity may be involved in the potential mechanisms underlying the above associations.
Asunto(s)
Enfermedad de Alzheimer , Apatía , Disfunción Cognitiva , Fragilidad , Humanos , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/diagnóstico por imagen , Estudios Longitudinales , Fragilidad/complicaciones , Disfunción Cognitiva/psicología , Pruebas NeuropsicológicasRESUMEN
Though previous studies revealed the potential associations of elevated levels of plasma fibrinogen with dementia, there is still limited understanding regarding the influence of Alzheimer's disease (AD) biomarkers on these associations. We sought to investigate the interrelationships among fibrinogen, cerebrospinal fluid (CSF) AD biomarkers, and cognition in non-demented adults. We included 1996 non-demented adults from the Chinese Alzheimer's Biomarker and LifestylE (CABLE) study and 337 from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. The associations of fibrinogen with AD biomarkers and cognition were explored using multiple linear regression models. The mediation analyses with 10 000 bootstrapped iterations were conducted to explore the mediating effects of AD biomarkers on cognition. In addition, interaction analyses and subgroup analyses were conducted to assess the influence of covariates on the relationships between fibrinogen and AD biomarkers. Participants exhibiting low Aß42 were designated as A+, while those demonstrating high phosphorylated tau (P-tau) and total tau (Tau) were labeled as T+ and N+, respectively. Individuals with normal measures of Aß42 and P-tau were categorized as the A-T- group, and those with abnormal levels of both Aß42 and P-tau were grouped under A+T+. Fibrinogen was higher in the A+ subgroup compared to that in the A- subgroup (p = 0.026). Fibrinogen was higher in the A+T+ subgroup compared to that in the A-T- subgroup (p = 0.011). Higher fibrinogen was associated with worse cognition and Aß pathology (all p < 0.05). Additionally, the associations between fibrinogen and cognition were partially mediated by Aß pathology (mediation proportion range 8%-28%). Interaction analyses and subgroup analyses showed that age and ApoE ε4 affect the relationships between fibrinogen and Aß pathology. Fibrinogen was associated with both cognition and Aß pathology. Aß pathology may be a critical mediator for impacts of fibrinogen on cognition.
Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Biomarcadores , Cognición , Fibrinógeno , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/sangre , Biomarcadores/sangre , Cognición/fisiología , Fibrinógeno/metabolismo , Fragmentos de Péptidos/sangre , Fragmentos de Péptidos/líquido cefalorraquídeo , Proteínas tau/sangre , Proteínas tau/líquido cefalorraquídeoRESUMEN
BACKGROUND: It has been reported that the risk of Alzheimer's disease (AD) could be predicted by the Australian National University Alzheimer Disease Risk Index (ANU-ADRI) scores. However, among non-demented Chinese adults, the correlations of ANU-ADRI scores with cerebrospinal fluid (CSF) core biomarkers and cognition remain unclear. METHODS: Individuals from the Chinese Alzheimer's Biomarker and LifestyLE (CABLE) study were grouped into three groups (low/intermediate/high risk groups) based on their ANU-ADRI scores. The multiple linear regression models were conducted to investigate the correlations of ANU-ADRI scores with several biomarkers of AD pathology. Mediation model and structural equation model (SEM) were conducted to investigate the mediators of the correlation between ANU-ADRI scores and cognition. RESULTS: A total of 1078 non-demented elders were included in our study, with a mean age of 62.58 (standard deviation [SD] 10.06) years as well as a female proportion of 44.16% (n = 476). ANU-ADRI scores were found to be significantly related with MMSE (ß = -0.264, P < 0.001) and MoCA (ß = -0.393, P < 0.001), as well as CSF t-tau (ß = 0.236, P < 0.001), p-tau (ß = 0.183, P < 0.001), and t-tau/Aß42 (ß = 0.094, P = 0.005). Mediation analyses indicated that the relationships of ANU-ADRI scores with cognitive scores were mediated by CSF t-tau or p-tau (mediating proportions ranging from 4.45% to 10.50%). SEM did not reveal that ANU-ADRI scores affected cognition by tau-related pathology and level of CSF soluble triggering receptor expressed on myeloid cells 2 (sTREM2). CONCLUSION: ANU-ADRI scores were associated with cognition and tau pathology. We also revealed a potential pathological mechanism underlying the impact of ANU-ADRI scores on cognition.
Asunto(s)
Enfermedad de Alzheimer , Anciano , Femenino , Humanos , Persona de Mediana Edad , Enfermedad de Alzheimer/líquido cefalorraquídeo , Péptidos beta-Amiloides/líquido cefalorraquídeo , Australia , Biomarcadores/líquido cefalorraquídeo , Cognición , Estilo de Vida , Fragmentos de Péptidos/líquido cefalorraquídeo , Proteínas tau/líquido cefalorraquídeo , MasculinoRESUMEN
BACKGROUND: Cardiometabolic multimorbidity is associated with an increased risk of dementia, but the pathogenic mechanisms linking them remain largely undefined. We aimed to assess the associations of cardiometabolic multimorbidity with cerebrospinal fluid (CSF) biomarkers of Alzheimer's disease (AD) pathology to enhance our understanding of the underlying mechanisms linking cardiometabolic multimorbidity and AD. METHODS: This study included 1464 cognitively intact participants from the Chinese Alzheimer's Biomarker and LifestylE (CABLE) database. Cardiometabolic diseases (CMD) are a group of interrelated disorders such as hypertension, diabetes, heart diseases (HD), and stroke. Based on the CMD status, participants were categorized as CMD-free, single CMD, or CMD multimorbidity. CMD multimorbidity is defined as the coexistence of two or more CMDs. The associations of cardiometabolic multimorbidity and CSF biomarkers were examined using multivariable linear regression models with demographic characteristics, the APOE ε4 allele, and lifestyle factors as covariates. Subgroup analyses stratified by age, sex, and APOE ε4 status were also performed. RESULTS: A total of 1464 individuals (mean age, 61.80 years; age range, 40-89 years) were included. The markers of phosphorylated tau-related processes (CSF P-tau181: ß = 0.165, P = 0.037) and neuronal injury (CSF T-tau: ß = 0.065, P = 0.033) were significantly increased in subjects with CMD multimorbidity (versus CMD-free), but not in those with single CMD. The association between CMD multimorbidity with CSF T-tau levels remained significant after controlling for Aß42 levels. Additionally, significantly elevated tau-related biomarkers were observed in patients with specific CMD combinations (i.e., hypertension and diabetes, hypertension and HD), especially in long disease courses. CONCLUSIONS: The presence of cardiometabolic multimorbidity was associated with tau phosphorylation and neuronal injury in cognitively normal populations. CMD multimorbidity might be a potential independent target to alleviate tau-related pathologies that can cause cognitive impairment.
Asunto(s)
Enfermedad de Alzheimer , Diabetes Mellitus , Hipertensión , Adulto , Humanos , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/líquido cefalorraquídeo , Apolipoproteína E4/líquido cefalorraquídeo , Multimorbilidad , Proteínas tau/líquido cefalorraquídeo , Péptidos beta-Amiloides/líquido cefalorraquídeo , Biomarcadores/líquido cefalorraquídeo , Fragmentos de Péptidos/líquido cefalorraquídeoRESUMEN
Inconsistent findings exist regarding the potential association between polluted air and Parkinson's disease (PD), with unclear insights into the role of inherited sensitivity. This study sought to explore the potential link between various air pollutants and PD risk, investigating whether genetic susceptibility modulates these associations. The population-based study involved 312,009 initially PD-free participants with complete genotyping data. Annual mean concentrations of PM2.5, PM10, NO2, and NOx were estimated, and a polygenic risk score (PRS) was computed to assess individual genetic risks for PD. Cox proportional risk models were employed to calculate hazard ratios (HR) and 95% confidence intervals (CI) for the associations between ambient air pollutants, genetic risk, and incident PD. Over a median 12.07-year follow-up, 2356 PD cases (0.76%) were observed. Compared to the lowest quartile of air pollution, the highest quartiles of NO2 and PM10 pollution showed HRs and 95% CIs of 1.247 (1.089-1.427) and 1.201 (1.052-1.373) for PD incidence, respectively. Each 10 µg/m3 increase in NO2 and PM10 yielded elevated HRs and 95% CIs for PD of 1.089 (1.026-1.155) and 1.363 (1.043-1.782), respectively. Individuals with significant genetic and PM10 exposure risks had the highest PD development risk (HR: 2.748, 95% CI: 2.145-3.520). Similarly, those with substantial genetic and NO2 exposure risks were over twice as likely to develop PD compared to minimal-risk counterparts (HR: 2.414, 95% CI: 1.912-3.048). Findings suggest that exposure to air contaminants heightens PD risk, particularly in individuals genetically predisposed to high susceptibility.
RESUMEN
BACKGROUND: Blood-based biomarkers for dementia are gaining attention due to their non-invasive nature and feasibility in regular healthcare settings. Here, we explored the associations between 249 metabolites with all-cause dementia (ACD), Alzheimer's disease (AD), and vascular dementia (VaD) and assessed their predictive potential. METHODS: This study included 274,160 participants from the UK Biobank. Cox proportional hazard models were employed to investigate longitudinal associations between metabolites and dementia. The importance of these metabolites was quantified using machine learning algorithms, and a metabolic risk score (MetRS) was subsequently developed for each dementia type. We further investigated how MetRS stratified the risk of dementia onset and assessed its predictive performance, both alone and in combination with demographic and cognitive predictors. RESULTS: During a median follow-up of 14.01 years, 5274 participants developed dementia. Of the 249 metabolites examined, 143 were significantly associated with incident ACD, 130 with AD, and 140 with VaD. Among metabolites significantly associated with dementia, lipoprotein lipid concentrations, linoleic acid, sphingomyelin, glucose, and branched-chain amino acids ranked top in importance. Individuals within the top tertile of MetRS faced a significantly greater risk of developing dementia than those in the lowest tertile. When MetRS was combined with demographic and cognitive predictors, the model yielded the area under the receiver operating characteristic curve (AUC) values of 0.857 for ACD, 0.861 for AD, and 0.873 for VaD. CONCLUSIONS: We conducted the largest metabolome investigation of dementia to date, for the first time revealed the metabolite importance ranking, and highlighted the contribution of plasma metabolites for dementia prediction.