Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-39000280

RESUMEN

Multiple alterations of cellular metabolism have been documented in experimental studies of autosomal dominant polycystic kidney disease (ADPKD) and are thought to contribute to its pathogenesis. To elucidate the molecular pathways and transcriptional regulators associated with the metabolic changes of renal cysts in ADPKD, we compared global gene expression data from human PKD1 renal cysts, minimally cystic tissues (MCT) from the same patients, and healthy human kidney cortical tissue samples. We found gene expression profiles of PKD1 renal cysts were consistent with the Warburg effect with gene pathway changes favoring increased cellular glucose uptake and lactate production, instead of pyruvate oxidation. Additionally, mitochondrial energy metabolism was globally depressed, associated with downregulation of gene pathways related to fatty acid oxidation (FAO), branched-chain amino acid (BCAA) degradation, the Krebs cycle, and oxidative phosphorylation (OXPHOS) in renal cysts. Activation of mTORC1 and its two target proto-oncogenes, HIF-1α and MYC, was predicted to drive the expression of multiple genes involved in the observed metabolic reprogramming (e.g., GLUT3, HK1/HK2, ALDOA, ENO2, PKM, LDHA/LDHB, MCT4, PDHA1, PDK1/3, MPC1/2, CPT2, BCAT1, NAMPT); indeed, their predicted expression patterns were confirmed by our data. Conversely, we found AMPK inhibition was predicted in renal cysts. AMPK inhibition was associated with decreased expression of PGC-1α, a transcriptional coactivator for transcription factors PPARα, ERRα, and ERRγ, all of which play a critical role in regulating oxidative metabolism and mitochondrial biogenesis. These data provide a comprehensive map of metabolic pathway reprogramming in ADPKD and highlight nodes of regulation that may serve as targets for therapeutic intervention.


Asunto(s)
Metabolismo Energético , Riñón Poliquístico Autosómico Dominante , Biología de Sistemas , Humanos , Biología de Sistemas/métodos , Riñón Poliquístico Autosómico Dominante/metabolismo , Riñón Poliquístico Autosómico Dominante/genética , Canales Catiónicos TRPP/metabolismo , Canales Catiónicos TRPP/genética , Mitocondrias/metabolismo , Mitocondrias/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Fosforilación Oxidativa , Regulación de la Expresión Génica
3.
Cells ; 13(11)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38891116

RESUMEN

Polycystic kidney disease (PKD) is characterized by extensive cyst formation and progressive fibrosis. However, the molecular mechanisms whereby the loss/loss-of-function of Polycystin 1 or 2 (PC1/2) provokes fibrosis are largely unknown. The small GTPase RhoA has been recently implicated in cystogenesis, and we identified the RhoA/cytoskeleton/myocardin-related transcription factor (MRTF) pathway as an emerging mediator of epithelium-induced fibrogenesis. Therefore, we hypothesized that MRTF is activated by PC1/2 loss and plays a critical role in the fibrogenic reprogramming of the epithelium. The loss of PC1 or PC2, induced by siRNA in vitro, activated RhoA and caused cytoskeletal remodeling and robust nuclear MRTF translocation and overexpression. These phenomena were also manifested in PKD1 (RC/RC) and PKD2 (WS25/-) mice, with MRTF translocation and overexpression occurring predominantly in dilated tubules and the cyst-lining epithelium, respectively. In epithelial cells, a large cohort of PC1/PC2 downregulation-induced genes was MRTF-dependent, including cytoskeletal, integrin-related, and matricellular/fibrogenic proteins. Epithelial MRTF was necessary for the paracrine priming of the fibroblast-myofibroblast transition. Thus, MRTF acts as a prime inducer of epithelial fibrogenesis in PKD. We propose that RhoA is a common upstream inducer of both histological hallmarks of PKD: cystogenesis and fibrosis.


Asunto(s)
Células Epiteliales , Enfermedades Renales Poliquísticas , Canales Catiónicos TRPP , Proteína de Unión al GTP rhoA , Animales , Humanos , Ratones , Citoesqueleto/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/patología , Fibrosis , Ratones Endogámicos C57BL , Enfermedades Renales Poliquísticas/metabolismo , Enfermedades Renales Poliquísticas/patología , Enfermedades Renales Poliquísticas/genética , Proteína de Unión al GTP rhoA/metabolismo , Transactivadores/metabolismo , Canales Catiónicos TRPP/metabolismo , Canales Catiónicos TRPP/genética
4.
Adv Kidney Dis Health ; 30(5): 407-416, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-38097331

RESUMEN

While autosomal dominant polycystic kidney disease (ADPKD) is a dichotomous diagnosis, substantial variability in disease severity exists. Identification of inherited risk through family history, genetic testing, and environmental risk factors through clinical assessment are important components of risk assessment for optimal management of patients with ADPKD. Genetic testing is especially helpful in cases with diagnostic uncertainty, particularly in cases with no apparent family history, in young cases (age less than 25 years) where a definitive diagnosis is sought, or in atypical presentations with early, severe, or discordant findings. Currently, risk assessment in ADPKD may be performed with the use of age-adjusted estimated glomerular filtration rate thresholds, evidence of rapid estimated glomerular filtration rate decline on serial measurements, age- and height-adjusted total kidney volume by Mayo Clinic Imaging Classification, or evidence of early hypertension and urological complications combined with PKD1 or PKD2 mutation class; however, caveats exist with each of these approaches. Fine-tuning of risk stratification with advanced imaging features and biomarkers is the subject of research but is not yet ready for general clinical practice. While conservative treatment strategies will be advised for all patients, those with the greatest rate of disease progression will have the most benefit from aggressive disease-modifying therapy. In this narrative review, we will summarize the evidence behind the clinical assessment and risk stratification of patients with ADPKD.


Asunto(s)
Riñón Poliquístico Autosómico Dominante , Insuficiencia Renal , Humanos , Adulto , Riñón Poliquístico Autosómico Dominante/complicaciones , Canales Catiónicos TRPP/genética , Mutación , Riñón , Insuficiencia Renal/complicaciones
5.
Sci Rep ; 13(1): 22257, 2023 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-38097698

RESUMEN

Tolvaptan is the first disease-modifying drug proven to slow eGFR decline in high-risk patients with ADPKD. However, barriers from the patient perspective to its use in real-life settings have not been systemically examined in a large cohort. This was a single-center, retrospective study of 523 existing or new patients with ADPKD followed at the Center for Innovative Management of PKD in Toronto, Ontario, between January 1, 2016 to December 31, 2018. All patients underwent clinical assessment including total kidney volume measurements and Mayo Clinic Imaging Class (MCIC). Those who were deemed to be at high risk were offered tolvaptan with their preference (yes or no) and reasons for their choices recorded. Overall, 315/523 (60%) patients had MCIC 1C-1E; however, only 96 (30%) of them were treated with tolvaptan at their last follow-up. Among these high-risk patients, those not treated versus treated with tolvaptan were more likely to have a higher eGFR (82 ± 26 vs. 61 ± 27 ml/min/1.73 m2), CKD stages 1-2 (79% vs. 41%), and MCIC 1C (63% vs. 31%). The most common reasons provided for not taking tolvaptan were lifestyle preference related to the aquaretic effect (51%), older age ≥ 60 (12%), and pregnancy/family planning (6%). In this real-world experience, at least 60% of patients with ADPKD considered to be at high risk for progression to ESKD by imaging were not treated with tolvaptan; most of them had early stages of CKD with well-preserved eGFR and as such, were prime targets for tolvaptan therapy to slow disease progression. Given that the most common reason for tolvaptan refusal was the concern for intolerability of the aquaretic side-effect, strategies to mitigate this may help to reduce this barrier to tolvaptan therapy.


Asunto(s)
Riñón Poliquístico Autosómico Dominante , Insuficiencia Renal Crónica , Humanos , Tolvaptán/uso terapéutico , Tolvaptán/efectos adversos , Riñón Poliquístico Autosómico Dominante/tratamiento farmacológico , Estudios Retrospectivos , Antagonistas de los Receptores de Hormonas Antidiuréticas/uso terapéutico , Antagonistas de los Receptores de Hormonas Antidiuréticas/efectos adversos , Ontario , Insuficiencia Renal Crónica/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...