Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
iScience ; 26(9): 107681, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37705955

RESUMEN

Men with incurable castration resistant prostate cancer (CRPC) are typically treated with taxanes; however, drug resistance rapidly develops. We previously identified a clinically relevant seven gene network in aggressive CRPC, which includes the spindle assembly checkpoint (SAC) kinase BUB1. Since SAC is deregulated in taxane resistant PC, we evaluated BUB1 and found that it was over-expressed in advanced PC patient datasets and taxane resistant PC cells. Treatment with a specific BUB1 kinase inhibitor re-sensitized resistant CRPC cells, including cells expressing constitutively active androgen receptor (AR) variants, to clinically used taxanes. Consistent with a role of AR variants in taxane resistance, ectopically expressed AR-V7 increased BUB1 levels and reduced sensitivity to taxanes. This work shows that disruption of BUB1 kinase activity reverted resistance to taxanes, which is essential to advancing BUB1 as a potential therapeutic target for intractable chemotherapy resistant CRPC including AR variant driven CRPC, which lacks durable treatment options.

2.
Pharmacol Rev ; 75(6): 1233-1318, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37586884

RESUMEN

The NR superfamily comprises 48 transcription factors in humans that control a plethora of gene network programs involved in a wide range of physiologic processes. This review will summarize and discuss recent progress in NR biology and drug development derived from integrating various approaches, including biophysical techniques, structural studies, and translational investigation. We also highlight how defective NR signaling results in various diseases and disorders and how NRs can be targeted for therapeutic intervention via modulation via binding to synthetic lipophilic ligands. Furthermore, we also review recent studies that improved our understanding of NR structure and signaling. SIGNIFICANCE STATEMENT: Nuclear receptors (NRs) are ligand-regulated transcription factors that are critical regulators of myriad physiological processes. NRs serve as receptors for an array of drugs, and in this review, we provide an update on recent research into the roles of these drug targets.


Asunto(s)
Farmacología Clínica , Humanos , Receptores Citoplasmáticos y Nucleares/metabolismo , Factores de Transcripción/metabolismo , Proteínas Portadoras , Ligandos
3.
J Clin Invest ; 132(23)2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36453547

RESUMEN

Androgen deprivation therapy (ADT) is the longstanding treatment for advanced prostate cancer (PC) because androgen receptor (AR) is the key therapeutic vulnerability for this disease. Bipolar androgen therapy (BAT) - the rapid cycling of supraphysiologic androgen (SPA) and low serum testosterone levels - is an alternative concept, but not all patients respond and acquired resistance can occur. In this issue of the JCI, Sena et al. developed a gene signature indicative of high AR activity to predict patient response to BAT, including a decline in both serum prostate-specific antigen (PSA) and tumor volume. Preclinical models showed that AR-mediated suppression of MYC, known to drive PC, was associated with decreased cell growth following SPA treatment. Because BAT eventually leads to resistance, the authors tested cycling between SPA and AR antagonism in a patient-derived xenograft and observed a delay in tumor growth. These findings represent a major step toward the informed use of BAT for advanced PC.


Asunto(s)
Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Andrógenos , Receptores Androgénicos/genética , Antagonistas de Andrógenos/farmacología , Antagonistas de Andrógenos/uso terapéutico , Biomarcadores
4.
Mol Cancer Res ; 20(8): 1295-1304, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35503085

RESUMEN

Men with advanced prostate cancer are treated by androgen deprivation therapy but the disease recurs as incurable castration-resistant prostate cancer (CRPC), requiring new treatment options. We previously demonstrated that the G protein-coupled receptor (GPCR) arginine vasopressin receptor type1A (AVPR1A) is expressed in CRPC and promotes castration-resistant growth in vitro and in vivo. AVPR1A is part of a family of GPCR's including arginine vasopressin receptor type 2 (AVPR2). Interrogation of prostate cancer patient sample data revealed that coexpression of AVPR1A and AVPR2 is highly correlated with disease progression. Stimulation of AVPR2 with a selective agonist desmopressin promoted CRPC cell proliferation through cAMP/protein kinase A signaling, consistent with AVPR2 coupling to the G protein subunit alpha s. In contrast, blocking AVPR2 with a selective FDA-approved antagonist, tolvaptan, reduced cell growth. In CRPC xenografts, antagonizing AVPR2, AVPR1A, or both significantly reduced CRPC tumor growth as well as decreased on-target markers of tumor burden. Combinatorial use of AVPR1A and AVPR2 antagonists promoted apoptosis synergistically in CRPC cells. Furthermore, we found that castration-resistant cells produced AVP, the endogenous ligand for arginine vasopressin receptors, and knockout of AVP in CRPC cells significantly reduced proliferation suggesting possible AVP autocrine signaling. These data indicate that the AVP/arginine vasopressin receptor signaling axis represents a promising and clinically actionable target for CRPC. IMPLICATIONS: The arginine vasopressin signaling axis in CRPC provides a therapeutic window that is targetable through repurposing safe and effective AVPR1A and AVPR2 antagonists.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Receptores de Vasopresinas , Antagonistas de Andrógenos , Arginina Vasopresina/uso terapéutico , Línea Celular Tumoral , Humanos , Masculino , Recurrencia Local de Neoplasia , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Receptores Androgénicos/metabolismo , Receptores de Vasopresinas/genética , Receptores de Vasopresinas/metabolismo
5.
Int J Pharm ; 591: 119985, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33069891

RESUMEN

Androgens play a central role in homeostatic and pathological processes of the prostate gland. At the cellular level, testosterone activates both the genomic signaling pathway, through the intracellular androgen receptor (AR), and membrane-initiated androgen signaling (MIAS), by plasma membrane receptors. We have previously shown that the activation of MIAS induces uncontrolled proliferation and fails to stimulate the beneficial immunomodulatory effects of testosterone in prostatic cells, becoming necessary to investigate if genomic signaling mediates homeostatic effects of testosterone. However, the lack of specific modulators for genomic androgen signaling has delayed the understanding of this mechanism. In this article, we demonstrate that monosialoganglioside (GM1) micelles are capable of delivering testosterone into the cytoplasm to specifically activate genomic signaling. Stimulation with testosterone-loaded GM1 micelles led to the activation of androgen response element (ARE)-regulated genes in vitro as well as to the recovery of normal prostate size and histology after castration in mice. In addition, these micelles avoided MIAS, as demonstrated by the absence of rapid signaling pathway activation and the inability to induce uncontrolled cell proliferation. In conclusion, our results validate a novel tool for the specific activation of genomic androgen signaling and demonstrate the importance of selective pathway activation in androgen-mediated proliferation.


Asunto(s)
Neoplasias de la Próstata , Receptores Androgénicos , Andrógenos , Animales , Gangliósido G(M1) , Genómica , Humanos , Masculino , Ratones , Micelas , Receptores Androgénicos/genética , Transducción de Señal , Testosterona
6.
Chemosphere ; 258: 127304, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32559490

RESUMEN

Humans are exposed to numerous endocrine disruptors on a daily basis, which may interfere with endogenous estrogens, with Di-(2-ethylhexyl) phthalate (DEHP) being one of the most employed. The anterior pituitary gland is a target of 17ß-estradiol (E2) through the specific estrogen receptors (ERs) α and ß, whose expression levels fluctuate in the gland under different contexts, and the ERα/ß index is responsible for the final E2 effect. The aim of the present study was to evaluate in vivo and in vitro the DEHP effects on ERα and ß expression in the pituitary cell population, and also its impact on lactotroph and somatotroph cell growth. Our results revealed that perinatal exposure to DEHP altered the ERα and ß expression pattern in pituitary glands from prepubertal and adult female rats and increased the percentage of lactotroph cells in adulthood. In the in vitro system, DEHP down-regulated ERα and ß expression, and as a result increased the ERα/ß ratio and decreased the percentages of lactotrophs and somatotrophs expressing ERα and ß. In addition, DEHP increased the S + G2M phases, Ki67 index and cyclin D1 in vitro, leading to a rise in the lactotroph and somatotroph cell populations. These results showed that DEHP modified the pituitary ERα and ß expression in lactotrophs and somatotrophs from female rats and had an impact on the pituitary cell growth. These changes in ER expression may be a mechanism underlying DEHP exposure in the pituitary gland, leading to cell growth deregulation.


Asunto(s)
Dietilhexil Ftalato/toxicidad , Ácidos Ftálicos/toxicidad , Receptores de Estrógenos/metabolismo , Animales , Proliferación Celular/efectos de los fármacos , Dietilhexil Ftalato/metabolismo , Disruptores Endocrinos/metabolismo , Estradiol/metabolismo , Receptor alfa de Estrógeno/metabolismo , Estrógenos/farmacología , Femenino , Lactotrofos/efectos de los fármacos , Lactotrofos/metabolismo , Hipófisis/efectos de los fármacos , Ratas
7.
Front Immunol ; 9: 1980, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30233581

RESUMEN

Neutrophils are major effectors of acute inflammation against infection and tissue damage, with ability to adapt their phenotype according to the microenvironment. Although sex hormones regulate adaptive immune cells, which explains sex differences in immunity and infection, little information is available about the effects of androgens on neutrophils. We therefore aimed to examine neutrophil recruitment and plasticity in androgen-dependent and -independent sites under androgen manipulation. By using a bacterial model of prostate inflammation, we showed that neutrophil recruitment was higher in testosterone-treated rats, with neutrophil accumulation being positively correlated to serum levels of testosterone and associated to stronger inflammatory signs and tissue damage. Testosterone also promoted LPS-induced neutrophil recruitment to the prostate, peritoneum, and liver sinusoids, as revealed by histopathology, flow cytometry, and intravital microscopy. Strikingly, neutrophils in presence of testosterone exhibited an impaired bactericidal ability and a reduced myeloperoxidase activity. This inefficient cellular profile was accompanied by high expression of the anti-inflammatory cytokines IL10 and TGFß1, which is compatible with the "N2-like" neutrophil phenotype previously reported in the tumor microenvironment. These data reveal an intriguing role for testosterone promoting inefficient, anti-inflammatory neutrophils that prolong bacterial inflammation, generating a pathogenic environment for several conditions. However, these immunomodulatory properties might be beneficially exploited in autoimmune and other non-bacterial diseases.


Asunto(s)
Andrógenos/metabolismo , Infecciones por Escherichia coli/inmunología , Neutrófilos/inmunología , Prostatitis/inmunología , Testosterona/metabolismo , Infecciones Urinarias/inmunología , Escherichia coli Uropatógena/fisiología , Andrógenos/administración & dosificación , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Interleucina-10/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Infiltración Neutrófila , Ratas , Ratas Wistar , Testosterona/administración & dosificación , Factor de Crecimiento Transformador beta/metabolismo , Microambiente Tumoral
9.
Endocrinology ; 159(2): 945-956, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29194490

RESUMEN

Androgen signaling in prostate smooth muscle cells (pSMCs) is critical for the maintenance of prostate homeostasis, the alterations of which are a central aspect in the development of pathological conditions. Testosterone can act through the classic androgen receptor (AR) in the cytoplasm, eliciting genomic signaling, or through different types of receptors located at the plasma membrane for nongenomic signaling. We aimed to find evidence of nongenomic testosterone-signaling mechanisms in pSMCs and their participation in cell proliferation, differentiation, and the modulation of the response to lipopolysaccharide. We demonstrated that pSMCs can respond to testosterone by a rapid activation of ERK1/2 and Akt. Furthermore, a pool of ARs localized at the cell surface of pSMCs is responsible for a nongenomic testosterone-induced increase in cell proliferation. Through membrane receptor stimulation, testosterone favors a muscle phenotype, indicated by an increase in smooth muscle markers. We also showed that the anti-inflammatory effects of testosterone, capable of attenuating lipopolysaccharide-induced proinflammatory actions, are promoted only by receptors located inside the cell. We postulate that testosterone might perform prohomeostatic effects through intracellular-initiated mechanisms by modulating cell proliferation and inflammation, whereas some pathological, hyperproliferative actions would be induced by membrane-initiated nongenomic signaling in pSMCs.


Asunto(s)
Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Próstata/efectos de los fármacos , Receptores Androgénicos/metabolismo , Testosterona/farmacología , Animales , Células Cultivadas , Masculino , Músculo Liso/metabolismo , Miocitos del Músculo Liso/metabolismo , Próstata/citología , Próstata/metabolismo , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Distribución Tisular
10.
Pathog Dis ; 75(7)2017 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-28911197

RESUMEN

Candida albicans is the prevalent etiological agent in acute vulvovaginal infection and the most severe chronic condition known as recurrent vulvovaginal candidiasis (VVC). A critical role of local innate immunity in defense and pathogenesis of vaginal infection by Candida is proposed. The fungal recognition by the innate immune receptor is an essential step for the induction of local responses including cytokines and antimicrobial peptides (AMPs) production for host protection. Using TLR2-deficient mice, we characterized the early innate immune response during VVC. Intravaginal challenge of TLR2-/- mice with C. albicans demonstrated that in response to the initial massive penetration, a strong local inflammatory reaction with recruitment of polymorphonuclear neutrophils was developed. Both interleukin 1ß (IL1ß)-regarded as the hallmark of VVC immunopathogenesis-and IL6 were increased in vaginal lavage. Murine beta defensin 1 (mBD1), a constitutive AMP with fungicidal and chemotactic activity, was significantly upregulated in wild type (WT) animals in response to infection. Interestingly, in the absence of TLR2 recognition, levels of mBD1 RNA more than twice higher than those in WT infected animals were observed. Interestingly, our results demonstrate that TLR2 signaling is important to control the fungal burden in the vaginal tract. These finding provide new evidence about the role of this innate receptor during VVC.


Asunto(s)
Candidiasis Vulvovaginal/genética , Receptor Toll-Like 2/metabolismo , Animales , Candida albicans , Candidiasis Vulvovaginal/microbiología , Citocinas/genética , Citocinas/metabolismo , Femenino , Predisposición Genética a la Enfermedad , Inflamación , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptor Toll-Like 2/genética
11.
J Cell Physiol ; 232(10): 2806-2817, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27861881

RESUMEN

Prostatic smooth muscle cells (pSMCs) differentiation is a key factor for prostatic homeostasis, with androgens exerting multiple effects on these cells. Here, we demonstrated that the myodifferentiator complex Srf/Myocd is up-regulated by testosterone in a dose-dependent manner in primary cultures of rat pSMCs, which was associated to the increase in Acta2, Cnn1, and Lmod1 expressions. Blocking Srf or Myocd by siRNAs inhibited the myodifferentiator effect of testosterone. While LPS led to a dedifferentiated phenotype in pSMCs, characterized by down-regulation of Srf/Myocd and smooth muscle cell (SMC)-restricted genes, endotoxin treatment on Myocd-overexpressing cells did not result in phenotypic alterations. Testosterone at a physiological dose was able to restore the muscular phenotype by normalizing Srf/Myocd expression in inflammation-induced dedifferentiated pSMCs. Moreover, the androgen reestablished the proliferation rate and IL-6 secretion increased by LPS. These results provide novel evidence regarding the myodifferentiating role of testosterone on SMCs by modulating Srf/Myocd. Thus, androgens preserve prostatic SMC phenotype, which is essential to maintain the normal structure and function of the prostate. J. Cell. Physiol. 232: 2806-2817, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Desdiferenciación Celular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Proteínas Nucleares/metabolismo , Testosterona/farmacología , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Actinas/metabolismo , Animales , Proteínas de Unión al Calcio/metabolismo , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Interleucina-6/metabolismo , Lipopolisacáridos/farmacología , Masculino , Proteínas de Microfilamentos/metabolismo , Miocitos del Músculo Liso/metabolismo , Proteínas Nucleares/genética , Fenotipo , Próstata , Interferencia de ARN , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Transactivadores/genética , Factores de Transcripción/genética , Transfección , Calponinas
12.
Cell Immunol ; 280(1): 50-60, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23261829

RESUMEN

The B subunit of Escherichia coli heat-labile enterotoxin (LTB) acts as efficient mucosal carrier for conjugated antigens. We expressed two heterologous proteins using E. coli as a host: a hybrid consisting of LTB and the A, B and C domain of synapsin (LTBABC) and the separated ABC peptide of this synaptic protein. Refolded LTBABC and LTB bound to the GM1 receptor and internalized into CHO-K1(GM1+) cells. LTBABC showed enhanced solubility and cell binding ability respect to the former hybrid LTBSC. Several oral doses of LTBABC were administered to rats with experimental autoimmune encephalomyelitis (EAE) from induction to the acute stage of the disease. This treatment decreased disease severity, delayed type hypersensitivity reaction and lymph node cell proliferation stimulated by myelin basic protein. Amelioration of EAE was also associated with modulation of the Th1/Th2 cytokine ratio, increased TGF-ß secretion in mesenteric lymph nodes as well as expansion of CD4(+)CD25(+)Foxp3(+) regulatory T cell population. These results indicate that the fusion protein LTBABC is suitable for further exploration of its therapeutic effect on EAE development.


Asunto(s)
Toxinas Bacterianas/uso terapéutico , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Enterotoxinas/uso terapéutico , Proteínas de Escherichia coli/uso terapéutico , Sinapsinas/uso terapéutico , Animales , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Células CHO/efectos de los fármacos , Células CHO/metabolismo , Bovinos , Cricetinae , Evaluación Preclínica de Medicamentos , Endocitosis , Enterotoxinas/química , Enterotoxinas/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Femenino , Gangliósido G(M1)/metabolismo , Activación de Linfocitos/efectos de los fármacos , Linfocinas/metabolismo , Masculino , Proteína Básica de Mielina/inmunología , Proteína Básica de Mielina/toxicidad , Fragmentos de Péptidos/química , Fragmentos de Péptidos/uso terapéutico , Desnaturalización Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína , Distribución Aleatoria , Ratas , Ratas Wistar , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/uso terapéutico , Método Simple Ciego , Relación Estructura-Actividad , Sinapsinas/química , Sinapsinas/genética , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA