RESUMEN
BACKGROUND: Colorectal cancer is a public health issue and was the third leading cause of cancer-related death worldwide in 2022. Early diagnosis can improve prognosis, making screening a central part of colorectal cancer management. Blood-based screening, diagnosis and follow-up of colorectal cancer patients are possible with the study of cell-free circulating tumor DNA. This study aimed to identify novel DNA methylation biomarkers of colorectal cancer that can be used for the follow-up of patients with colorectal cancer. METHODS: A DNA methylation profile was established in the Gene Expression Omnibus (GEO) database (n = 507) using bioinformatics analysis and subsequently confirmed using The Cancer Genome Atlas (TCGA) database (n = 348). The in silico profile was then validated on local tissue and cell-free DNA samples using methylation-specific digital PCR in colorectal cancer patients (n = 35) and healthy donors (n = 35). RESULTS: The DNA methylation of COL25A1 and METAP1D was predicted to be a colorectal cancer biomarker by bioinformatics analysis (ROC AUC = 1, 95% CI [0.999-1]). The two biomarkers were confirmed with tissue samples, and the combination of COL25A1 and METAP1D yielded 49% sensitivity and 100% specificity for cell-free DNA. CONCLUSION: Bioinformatics analysis of public databases revealed COL25A1 and METAP1D DNA methylation as clinically applicable liquid biopsies DNA methylation biomarkers. The specificity implies an excellent positive predictive value for follow-up, and the high sensitivity and relative noninvasiveness of a blood-based test make these biomarkers compatible with colorectal cancer screening. However, the clinical impact of these biomarkers in colorectal cancer screening and follow-up needs to be established in further prospective studies.
Asunto(s)
Biomarcadores de Tumor , Neoplasias Colorrectales , Metilación de ADN , Humanos , Metilación de ADN/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/diagnóstico , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/sangre , Femenino , Masculino , Biopsia Líquida/métodos , Persona de Mediana Edad , Epigénesis Genética/genética , Anciano , Reacción en Cadena de la Polimerasa/métodos , Biología Computacional/métodos , ADN Tumoral Circulante/genética , ADN Tumoral Circulante/sangreRESUMEN
Merkel cell carcinoma (MCC) is an aggressive skin cancer for which Merkel cell polyomavirus integration and expression of viral oncogenes small T and Large T have been identified as major oncogenic determinants. Recently, a component of the PRC2 complex, the histone methyltransferase enhancer of zeste homolog 2 (EZH2) that induces H3K27 trimethylation as a repressive mark has been proposed as a potential therapeutic target in MCC. Because divergent results have been reported for the levels of EZH2 and trimethylation of lysine 27 on histone 3, we analyzed these factors in a large MCC cohort to identify the molecular determinants of EZH2 activity in MCC and to establish MCC cell lines' sensitivity to EZH2 inhibitors. Immunohistochemical expression of EZH2 was observed in 92% of MCC tumors (156 of 170), with higher expression levels in virus-positive than virus-negative tumors (P = 0.026). For the latter, we showed overexpression of EZHIP, a negative regulator of the PRC2 complex. In vitro, ectopic expression of the large T antigen in fibroblasts led to the induction of EZH2 expression, whereas the knockdown of T antigens in MCC cell lines resulted in decreased EZH2 expression. EZH2 inhibition led to selective cytotoxicity on virus-positive MCC cell lines. This study highlights the distinct mechanisms of EZH2 induction between virus-negative and -positive MCC.
Asunto(s)
Carcinoma de Células de Merkel , Poliomavirus de Células de Merkel , Neoplasias Cutáneas , Humanos , Carcinoma de Células de Merkel/patología , Histonas/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Neoplasias Cutáneas/patología , Poliomavirus de Células de Merkel/genética , Antígenos Virales de Tumores/genética , Antígenos Virales de Tumores/metabolismoRESUMEN
Pancreatic ductal adenocarcinoma (PDAC) is marked by molecular heterogeneity and poor prognosis. Among the stemness-related transcription factors, Spalt-like Transcription Factor 4 (SALL4) is correlated with unfavorable outcomes; however, its roles in PDAC remain unclear. SALL4high expression defines a PDAC subpopulation characterized by a shortened patient survival. Although SALL4 expression was mostly evaluated in tumor cells, our findings identify this embryonic transcription factor as a new biomarker in PDAC-derived stroma. Gene expression analysis reveals that the SALL4high PDAC subset is enriched in cancer stem cell properties and stromal enrichment pathways; notably, an interaction with cancer-associated fibroblasts (CAF) activated by TGF-ß. A particular oncogenic network was unraveled where Netrin-1 and TGF-ß1 collaborate to induce SALL4 expression in CAF and drive their cancer-stemness-promoting functions. A 7-gene stromal signature related to SALL4high PDAC samples was highlighted and validated by immunochemistry for prognosis and clinical application. This SALL4-related stroma discriminated pancreatic preinvasive from invasive lesions and was enriched in short-term survivors. Our results show that SALL4 transcriptional activity controls a molecular network defined by a specific stromal signature that characterizes PDAC invasiveness and worse clinical outcomes.
Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Pronóstico , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/patología , Páncreas/patología , Factores de Transcripción/genética , Neoplasias PancreáticasRESUMEN
CD226 has been reported to participate in the rescue of CD8+ T cell dysfunction. In this study, we aimed to assess the prognostic value of CD226 in tumor-infiltrating lymphocytes (TILs) derived from colorectal cancer (CRC) liver metastases treated with chemotherapy and radical surgery. TILs from 43 metastases were isolated and analyzed ex vivo using flow cytometry. CD155 and CD3 levels in the tumor microenvironment were assessed by immunohistochemistry. Exploration and validation of biological processes highlighted in this study were performed by bioinformatics analysis of bulk RNA-seq results for 28 CRC liver metastases pretreated with chemotherapy as well as public gene expression datasets. CD226 expression contributes to the definition of the immune context in CRC liver metastases and primary tumors. CD226 on CD8+ T cells was not specifically coexpressed with other immune checkpoints, such as PD1, TIGIT, and TIM3, in liver metastases. Multivariate Cox regression analysis revealed CD226 expression on CD8+ T cells to be an independent prognostic factor (p = 0.003), along with CD3 density at invasion margins (p = 0.003) and TIGIT expression on CD4+ T cells (p = 0.019). CD155 was not associated with the prognostic value of CD226. Gene expression analysis in a validation dataset confirmed the prognostic value of CD226 in CRC liver metastases but not in primary tumors. Downregulation of CD226 on CD8+ TILs in the liver microenvironment was restored by IL15 treatment. Overall, CD226 expression on liver metastasis-infiltrating CD8+ T cells selectively contributes to immune surveillance of CRC liver metastases and has prognostic value for patients undergoing radical surgery.
Asunto(s)
Neoplasias Colorrectales , Neoplasias Hepáticas , Humanos , Linfocitos T CD8-positivos , Neoplasias Colorrectales/patología , Neoplasias Hepáticas/secundario , Pronóstico , Receptores Inmunológicos/metabolismo , Microambiente TumoralRESUMEN
Combining immunogenic cell death-inducing chemotherapies and PD-1 blockade can generate remarkable tumor responses. It is now well established that TGF-ß1 signaling is a major component of treatment resistance and contributes to the cancer-related immunosuppressive microenvironment. However, whether TGF-ß1 remains an obstacle to immune checkpoint inhibitor efficacy when immunotherapy is combined with chemotherapy is still to be determined. Several syngeneic murine models were used to investigate the role of TGF-ß1 neutralization on the combinations of immunogenic chemotherapy (FOLFOX: 5-fluorouracil and oxaliplatin) and anti-PD-1. Cancer-associated fibroblasts (CAF) and immune cells were isolated from CT26 and PancOH7 tumor-bearing mice treated with FOLFOX, anti-PD-1 ± anti-TGF-ß1 for bulk and single cell RNA sequencing and characterization. We showed that TGF-ß1 neutralization promotes the therapeutic efficacy of FOLFOX and anti-PD-1 combination and induces the recruitment of antigen-specific CD8+ T cells into the tumor. TGF-ß1 neutralization is required in addition to chemo-immunotherapy to promote inflammatory CAF infiltration, a chemokine production switch in CAF leading to decreased CXCL14 and increased CXCL9/10 production and subsequent antigen-specific T cell recruitment. The immune-suppressive effect of TGF-ß1 involves an epigenetic mechanism with chromatin remodeling of CXCL9 and CXCL10 promoters within CAF DNA in a G9a and EZH2-dependent fashion. Our results strengthen the role of TGF-ß1 in the organization of a tumor microenvironment enriched in myofibroblasts where chromatin remodeling prevents CXCL9/10 production and limits the efficacy of chemo-immunotherapy.
Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias , Ratones , Animales , Fibroblastos Asociados al Cáncer/patología , Linfocitos T CD8-positivos , Inmunoterapia/métodos , Quimiocinas/uso terapéutico , Neoplasias/tratamiento farmacológico , Microambiente TumoralRESUMEN
Proximity ligation in situ assay (PLISA) is a powerful method to quantify endogen protein-protein interactions in cells and simultaneously identify localization of these interactions. PLISA can be used to quantify autophagy flux and can as well be adapted to assess global autophagy (SQSTM1/P62-LC3B interaction) or specific autophagy, such as mitophagy (NIX-LC3B). Here, we describe a step-by-step method to monitor autophagy using PLISA in adherent cancer cells.
Asunto(s)
Autofagia , Neoplasias , Proteínas Relacionadas con la Autofagia/metabolismo , Mitofagia , Proteína Sequestosoma-1/metabolismoRESUMEN
Persistent infection with some mucosal α-genus human papillomaviruses (HPVs; the most prevalent one being HPV16) can induce cervical carcinoma, anogenital cancers, and a subset of head and neck squamous cell carcinoma (HNSCC). Cutaneous ß-genus HPVs (such as HPV5 and HPV8) associate with skin lesions that can progress into squamous cell carcinoma with sun exposure in Epidermodysplasia verruciformis patients and immunosuppressed patients. Here, we analyzed mechanisms used by E6 proteins from the α- and ß-genus to inhibit the interferon-ß (IFNB1) response. HPV16 E6 mediates this effect by a strong direct interaction with interferon regulatory factor 3 (IRF3). The binding site of E6 was localized within a flexible linker between the DNA-binding domain and the IRF-activation domain of IRF3 containing an LxxLL motif. The crystallographic structure of the complex between HPV16 E6 and the LxxLL motif of IRF3 was solved and compared with the structure of HPV16 E6 interacting with the LxxLL motif of the ubiquitin ligase E6AP. In contrast, cutaneous HPV5 and HPV8 E6 proteins bind to the IRF3-binding domain (IBiD) of the CREB-binding protein (CBP), a key transcriptional coactivator in IRF3-mediated IFN-ß expression. IMPORTANCE Persistent HPV infections can be associated with the development of several cancers. The ability to persist depends on the ability of the virus to escape the host immune system. The type I interferon (IFN) system is the first-line antiviral defense strategy. HPVs carry early proteins that can block the activation of IFN-I. Among mucosal α-genus HPV types, the HPV16 E6 protein has a remarkable property to strongly interact with the transcription factor IRF3. Instead, cutaneous HPV5 and HPV8 E6 proteins bind to the IRF3 cofactor CBP. These results highlight the versatility of E6 proteins to interact with different cellular targets. The interaction between the HPV16 E6 protein and IRF3 might contribute to the higher prevalence of HPV16 than that of other high-risk mucosal HPV types in HPV-associated cancers.
Asunto(s)
Factor 3 Regulador del Interferón , Interferón beta , Proteínas Oncogénicas Virales , Infecciones por Papillomavirus , Proteínas Represoras , Papillomavirus Humano 16/metabolismo , Humanos , Factor 3 Regulador del Interferón/genética , Factor 3 Regulador del Interferón/metabolismo , Interferón beta/metabolismo , Membrana Mucosa/virología , Proteínas Oncogénicas Virales/genética , Proteínas Oncogénicas Virales/metabolismo , Papillomaviridae/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Piel/virologíaRESUMEN
Despite the high prevalence of both cervico-vaginal human papillomavirus (HPV) infection and bacterial vaginosis (BV) worldwide, their causal relationship remains unclear. While BV has been presumed to be a risk factor for HPV acquisition and related carcinogenesis for a long time, here, supported by both a large retrospective follow-up study (n = 6,085) and extensive in vivo data using the K14-HPV16 transgenic mouse model, we report a novel blueprint in which the opposite association also exists. Mechanistically, by interacting with several core members (NEMO, CK1 and ß-TrCP) of both NF-κB and Wnt/ß-catenin signaling pathways, we show that HPV E7 oncoprotein greatly inhibits host defense peptide expression. Physiologically secreted by the squamous mucosa lining the lower female genital tract, we demonstrate that some of these latter are fundamental factors governing host-microbial interactions. More specifically, several innate molecules down-regulated in case of HPV infection are hydrolyzed, internalized and used by the predominant Lactobacillus species as amino acid source sustaining their growth/survival. Collectively, this study reveals a new viral immune evasion strategy which, by its persistent/negative impact on lactic acid bacteria, ultimately causes the dysbiosis of vaginal microbiota.
Asunto(s)
Microbiota , Infecciones por Papillomavirus , Vaginosis Bacteriana , Aminoácidos , Animales , Femenino , Estudios de Seguimiento , Lactobacillus/fisiología , Ratones , Microbiota/fisiología , Membrana Mucosa , Péptidos , Estudios Retrospectivos , Vagina/microbiología , Vaginosis Bacteriana/microbiologíaRESUMEN
The U6 snRNA, the core catalytic component of the spliceosome, is extensively modified post-transcriptionally, with 2'-O-methylation being most common. However, how U6 2'-O-methylation is regulated remains largely unknown. Here we report that TFIP11, the human homolog of the yeast spliceosome disassembly factor Ntr1, localizes to nucleoli and Cajal Bodies and is essential for the 2'-O-methylation of U6. Mechanistically, we demonstrate that TFIP11 knockdown reduces the association of U6 snRNA with fibrillarin and associated snoRNAs, therefore altering U6 2'-O-methylation. We show U6 snRNA hypomethylation is associated with changes in assembly of the U4/U6.U5 tri-snRNP leading to defects in spliceosome assembly and alterations in splicing fidelity. Strikingly, this function of TFIP11 is independent of the RNA helicase DHX15, its known partner in yeast. In sum, our study demonstrates an unrecognized function for TFIP11 in U6 snRNP modification and U4/U6.U5 tri-snRNP assembly, identifying TFIP11 as a critical spliceosome assembly regulator.
Asunto(s)
Factores de Empalme de ARN/metabolismo , Empalme del ARN/fisiología , ARN Nuclear Pequeño/metabolismo , Ribonucleoproteína Nuclear Pequeña U4-U6/metabolismo , Ribonucleoproteína Nuclear Pequeña U5/metabolismo , Nucléolo Celular/metabolismo , Supervivencia Celular , Cuerpos Enrollados/metabolismo , Células HeLa , Humanos , Metilación , Mitosis , Proteínas Nucleares/metabolismo , Motas Nucleares/metabolismo , Unión Proteica , Estabilidad Proteica , Precursores del ARN/metabolismo , Factores de Empalme de ARN/genética , ARN Nucleolar Pequeño/metabolismo , Empalmosomas/metabolismoRESUMEN
EMT is a reversible cellular process that is linked to gene expression reprogramming, which allows for epithelial cells to undergo a phenotypic switch to acquire mesenchymal properties. EMT is associated with cancer progression and cancer therapeutic resistance and it is known that, during the EMT, many stress response pathways, such as autophagy and NMD, are dysregulated. Therefore, our goal was to study the regulation of ATG8 family members (GABARAP, GABARAPL1, LC3B) by the NMD and to identify molecular links between these two cellular processes that are involved in tumor development and metastasis formation. IHC experiments, which were conducted in a cohort of patients presenting lung adenocarcinomas, showed high GABARAPL1 and low UPF1 levels in EMT+ tumors. We observed increased levels of GABARAPL1 correlated with decreased levels of NMD factors in A549 cells in vitro. We then confirmed that GABARAPL1 mRNA was indeed targeted by the NMD in a 3'UTR-dependent manner and we identified four overlapping binding sites for UPF1 and eIF4A3 that are potentially involved in the recognition of this transcript by the NMD pathway. Our study suggests that 3'UTR-dependent NMD might be an important mechanism that is involved in the induction of autophagy and could represent a promising target in the development of new anti-cancer therapies.
RESUMEN
Evidences highlight the role of various CD4+ helper T cells (CD4+ Th) subpopulations in orchestrating the immune responses against cancers. Epigenetics takes an important part in the regulation of CD4+ Th polarization and plasticity. In this review, we described the epigenetic factors that govern CD4+ T cells differentiation and recruitment in the tumor microenvironment and their subsequent involvement in the antitumor immunity. Finally, we discussed how to manipulate tumor reactive CD4+ Th responses by epigenetic drugs to improve anticancer immunotherapy.
Asunto(s)
Antineoplásicos/uso terapéutico , Reprogramación Celular/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Inmunoterapia Adoptiva , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Neoplasias/terapia , Linfocitos T Colaboradores-Inductores/efectos de los fármacos , Linfocitos T Colaboradores-Inductores/trasplante , Animales , Antineoplásicos/efectos adversos , Diferenciación Celular/efectos de los fármacos , Humanos , Inmunoterapia Adoptiva/efectos adversos , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/metabolismo , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Colaboradores-Inductores/metabolismo , Resultado del Tratamiento , Microambiente TumoralRESUMEN
Epithelial to mesenchymal transition (EMT) is a process that allows epithelial cells to progressively acquire a reversible mesenchymal phenotype. Here, we recount the main events in the history of EMT. EMT was first studied during embryonic development. Nowadays, it is an important field in cancer research, studied all around the world by more and more scientists, because it was shown that EMT is involved in cancer aggressiveness in many different ways. The main features of EMT's involvement in embryonic development, fibrosis and cancers are briefly reviewed here.
Asunto(s)
Embrión de Mamíferos/metabolismo , Desarrollo Embrionario , Transición Epitelial-Mesenquimal , Neoplasias/metabolismo , Animales , HumanosRESUMEN
Androgen deprivation therapy (ADT) is the standard of care for treatment of nonresectable prostate cancer. Despite high treatment efficiency, most patients ultimately develop lethal castration-resistant prostate cancer (CRPC). In this study, we performed a comparative proteomic analysis of three in vivo, androgen receptor (AR)-responsive orthograft models of matched hormone-naïve prostate cancer and CRPC. Differential proteomic analysis revealed that distinct molecular mechanisms, including amino acid (AA) and fatty acid metabolism, are involved in the response to ADT in the different models. Despite this heterogeneity, Schlafen family member 5 (SLFN5) was identified as an AR-regulated protein in CRPC. SLFN5 expression was high in CRPC tumors and correlated with poor patient outcome. In vivo, SLFN5 depletion strongly impaired tumor growth in castrated conditions. Mechanistically, SLFN5 interacted with ATF4 and regulated the expression of LAT1, an essential AA transporter. Consequently, SLFN5 depletion in CRPC cells decreased intracellular levels of essential AA and impaired mTORC1 signaling in a LAT1-dependent manner. These results confirm that these orthograft models recapitulate the high degree of heterogeneity observed in patients with CRPC and further highlight SLFN5 as a clinically relevant target for CRPC. SIGNIFICANCE: This study identifies SLFN5 as a novel regulator of the LAT1 amino acid transporter and an essential contributor to mTORC1 activity in castration-resistant prostate cancer.
Asunto(s)
Biomarcadores de Tumor/metabolismo , Proteínas de Ciclo Celular/metabolismo , Regulación Neoplásica de la Expresión Génica , Transportador de Aminoácidos Neutros Grandes 1/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/patología , Serina-Treonina Quinasas TOR/metabolismo , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Animales , Apoptosis , Biomarcadores de Tumor/genética , Proteínas de Ciclo Celular/genética , Proliferación Celular , Humanos , Transportador de Aminoácidos Neutros Grandes 1/genética , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Metaboloma , Ratones , Ratones Desnudos , Pronóstico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Proteoma , Tasa de Supervivencia , Serina-Treonina Quinasas TOR/genética , Transcriptoma , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
It is clearly established that the immune system can affect cancer response to therapy. However, the influence of the tumor microenvironment (TME) on immune cells is not completely understood. In this respect, alternative splicing is increasingly described to affect the immune system. Here, we showed that the TME, via a TGFß-dependent mechanism, increased alternative splicing events and induced the expression of an alternative isoform of the IRF1 transcription factor (IRF1Δ7) in Th1 cells. We found that the SFPQ splicing factor (splicing factor, proline- and glutamine-rich) was responsible for the IRF1Δ7 production. We also showed, in both mice and humans, that the IRF1 alternative isoform altered the full-length IRF1 transcriptional activity on the Il12rb1 promoter, resulting in decreased IFNγ secretion in Th1 cells. Thus, the IRF1Δ7 isoform was increased in the TME, and inhibiting IRF1Δ7 expression could potentiate Th1 antitumor responses.
Asunto(s)
Factor 1 Regulador del Interferón/genética , Interferón gamma/metabolismo , Neoplasias/inmunología , Empalme Alternativo , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica/inmunología , Técnicas de Silenciamiento del Gen , Humanos , Factor 1 Regulador del Interferón/metabolismo , Ratones , Neoplasias/genética , Neoplasias/patología , Regiones Promotoras Genéticas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Precursores del ARN/metabolismo , ARN Mensajero/metabolismo , RNA-Seq , Receptores de Interleucina-12 , Células TH1/inmunología , Células TH1/metabolismo , Escape del Tumor/genética , Microambiente Tumoral/genética , Microambiente Tumoral/inmunologíaRESUMEN
The role of Epigenetics in Epithelial Mesenchymal Transition (EMT) has recently emerged. Two epigenetic enzymes with paradoxical roles have previously been associated to EMT, EZH2 (Enhancer of Zeste 2 Polycomb Repressive Complex 2 (PRC2) Subunit), a lysine methyltranserase able to add the H3K27me3 mark, and the histone demethylase KDM6B (Lysine Demethylase 6B), which can remove the H3K27me3 mark. Nevertheless, it still remains unclear how these enzymes, with apparent opposite activities, could both promote EMT. In this study, we evaluated the function of these two enzymes using an EMT-inducible model, the lung cancer A549 cell line. ChIP-seq coupled with transcriptomic analysis showed that EZH2 and KDM6B were able to target and modulate the expression of different genes during EMT. Based on this analysis, we described INHBB, WTN5B, and ADAMTS6 as new EMT markers regulated by epigenetic modifications and directly implicated in EMT induction.
RESUMEN
Due to the spectacular number of studies focusing on epigenetics in the last few decades, and particularly for the last few years, the availability of a chronology of epigenetics appears essential. Indeed, our review places epigenetic events and the identification of the main epigenetic writers, readers and erasers on a historic scale. This review helps to understand the increasing knowledge in molecular and cellular biology, the development of new biochemical techniques and advances in epigenetics and, more importantly, the roles played by epigenetics in many physiological and pathological situations.
Asunto(s)
Epigénesis Genética , Epigenómica/historia , Animales , Metilación de ADN , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Procesamiento Proteico-PostraduccionalRESUMEN
Despite the clinical success of Androgen Receptor (AR)-targeted therapies, reactivation of AR signalling remains the main driver of castration-resistant prostate cancer (CRPC) progression. In this study, we perform a comprehensive unbiased characterisation of LNCaP cells chronically exposed to multiple AR inhibitors (ARI). Combined proteomics and metabolomics analyses implicate an acquired metabolic phenotype common in ARI-resistant cells and associated with perturbed glucose and lipid metabolism. To exploit this phenotype, we delineate a subset of proteins consistently associated with ARI resistance and highlight mitochondrial 2,4-dienoyl-CoA reductase (DECR1), an auxiliary enzyme of beta-oxidation, as a clinically relevant biomarker for CRPC. Mechanistically, DECR1 participates in redox homeostasis by controlling the balance between saturated and unsaturated phospholipids. DECR1 knockout induces ER stress and sensitises CRPC cells to ferroptosis. In vivo, DECR1 deletion impairs lipid metabolism and reduces CRPC tumour growth, emphasizing the importance of DECR1 in the development of treatment resistance.