Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Death Dis ; 13(7): 595, 2022 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-35817766

RESUMEN

Age-related hearing loss (ARHL) is the most common sensory impairment mainly caused by degeneration of sensory hair cells in the cochlea with no causal medical treatment available. Auditory function and sensory hair cell survival critically depend on the Kv7.4 (KCNQ4) channel, a voltage-gated potassium channel expressed in outer hair cells (OHCs), with its impaired function or reduced activity previously associated with ARHL. Here, we investigated the effect of a potent small-molecule Kv7.4 agonist on ARHL in the senescence-accelerated mouse prone 8 (SAMP8) model. For the first time in vivo, we show that Kv7.4 activation can significantly reduce age-related threshold shifts of auditory brainstem responses as well as OHC loss in the SAMP8 model. Pharmacological activation of Kv7.4 thus holds great potential as a therapeutic approach for ARHL as well as other hearing impairments related to Kv7.4 function.


Asunto(s)
Células Ciliadas Auditivas Externas , Pérdida Auditiva , Animales , Cóclea , Modelos Animales de Enfermedad , Audición , Pérdida Auditiva/tratamiento farmacológico , Ratones , Canales de Potasio
2.
Front Aging Neurosci ; 13: 708190, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34408646

RESUMEN

Age-related hearing loss (ARHL) is the most common sensory deficit in aging society, which is accompanied by increased speech discrimination difficulties in noisy environments, social isolation, and cognitive decline. The audiometric degree of ARHL is largely correlated with sensory hair cell loss in addition to age-related factors not captured by histopathological analysis of the human cochlea. Previous studies have identified the senescence-accelerated mouse prone strain 8 (SAMP8) as a model for studying ARHL and age-related modifications of the cochlear redox environment. However, the SAMP8 population exhibits a large variability in auditory function decline over age, whose underlying cause remains unknown. In this study, we analyzed auditory function of SAMP8 mice by measuring auditory brainstem response (ABR) thresholds at the age of 6 weeks (juvenile), 12 weeks (young adult), and 24 weeks (adult). Consistent with previous studies, SAMP8 mice exhibit an early progressive, age-related decline of hearing acuity. However, a spatiotemporal cytohistological analysis showed that the significant increase in threshold variability was not concurrently reflected in outer hair cell (OHC) loss observed in the lower and upper quartiles of the ABR threshold distributions over age. This functional loss was found to precede OHC loss suggesting that age-related phenotypic changes may be contributing factors not represented in cytohistological analysis. The expression of potassium channels KCNQ4 (KV7.4), which mediates the current IK,n crucial for the maintenance of OHC membrane potential, and KCNQ1 (KV7.1), which is an essential component in potassium circulation and secretion into the endolymph generating the endocochlear potential, showed differences between these quartiles and age groups. This suggests that phenotypic changes in OHCs or the stria vascularis due to variable oxidative deficiencies in individual mice may be predictors of the observed threshold variability in SAMP8 mice and their progressive ARHL. In future studies, further phenotypic predictors affected by accumulated metabolic challenges over age need to be investigated as potentially underlying causes of ARHL preceding irreversible OHC loss in the SAMP8 mouse model.

3.
Pflugers Arch ; 473(5): 823-840, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33336302

RESUMEN

Age-related hearing loss (ARHL) is the most prevalent sensory deficit in the elderly and constitutes the third highest risk factor for dementia. Lifetime noise exposure, genetic predispositions for degeneration, and metabolic stress are assumed to be the major causes of ARHL. Both noise-induced and hereditary progressive hearing have been linked to decreased cell surface expression and impaired conductance of the potassium ion channel KV7.4 (KCNQ4) in outer hair cells, inspiring future therapies to maintain or prevent the decline of potassium ion channel surface expression to reduce ARHL. In concert with KV7.4 in outer hair cells, KV7.1 (KCNQ1) in the stria vascularis, calcium-activated potassium channels BK (KCNMA1) and SK2 (KCNN2) in hair cells and efferent fiber synapses, and KV3.1 (KCNC1) in the spiral ganglia and ascending auditory circuits share an upregulated expression or subcellular targeting during final differentiation at hearing onset. They also share a distinctive fragility for noise exposure and age-dependent shortfalls in energy supply required for sustained surface expression. Here, we review and discuss the possible contribution of select potassium ion channels in the cochlea and auditory pathway to ARHL. We postulate genes, proteins, or modulators that contribute to sustained ion currents or proper surface expressions of potassium channels under challenging conditions as key for future therapies of ARHL.


Asunto(s)
Vías Auditivas/metabolismo , Cóclea/metabolismo , Canales de Potasio/metabolismo , Presbiacusia/metabolismo , Animales , Humanos , Canales de Potasio/genética , Presbiacusia/genética
4.
J Biol Chem ; 294(2): 644-661, 2019 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-30455355

RESUMEN

Ataxin-3 is a deubiquitinating enzyme and the affected protein in the neurodegenerative disorder Machado-Joseph disease (MJD). The ATXN3 gene is alternatively spliced, resulting in protein isoforms that differ in the number of ubiquitin-interacting motifs. Additionally, nonsynonymous SNPs in ATXN3 cause amino acid changes in ataxin-3, and one of these polymorphisms introduces a premature stop codon in one isoform. Here, we examined the effects of different ataxin-3 isoforms and of the premature stop codon on ataxin-3's physiological function and on main disease mechanisms. At the physiological level, we show that alternative splicing and the premature stop codon alter ataxin-3 stability and that ataxin-3 isoforms differ in their enzymatic deubiquitination activity, subcellular distribution, and interaction with other proteins. At the pathological level, we found that the expansion of the polyglutamine repeat leads to a stabilization of ataxin-3 and that ataxin-3 isoforms differ in their aggregation properties. Interestingly, we observed a functional interaction between normal and polyglutamine-expanded ATXN3 allelic variants. We found that interactions between different ATXN3 allelic variants modify the physiological and pathophysiological properties of ataxin-3. Our findings indicate that alternative splicing and interactions between different ataxin-3 isoforms affect not only major aspects of ataxin-3 function but also MJD pathogenesis. Our results stress the importance of considering isoforms of disease-causing proteins and their interplay with the normal allelic variant as disease modifiers in MJD and autosomal-dominantly inherited diseases in general.


Asunto(s)
Empalme Alternativo , Ataxina-3/genética , Ataxina-3/metabolismo , Enfermedad de Machado-Joseph/genética , Agregación Patológica de Proteínas/genética , Ataxina-3/análisis , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Enfermedad de Machado-Joseph/metabolismo , Enfermedad de Machado-Joseph/patología , Polimorfismo de Nucleótido Simple , Agregación Patológica de Proteínas/metabolismo , Agregación Patológica de Proteínas/patología , Mapas de Interacción de Proteínas , Isoformas de Proteínas/análisis , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estabilidad Proteica , Ubiquitina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...