Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Langmuir ; 39(40): 14212-14222, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37773978

RESUMEN

Hyaluronic acid, a naturally occurring carbohydrate biopolymer in human tissues, finds wide application in cosmetics, medicine, and material science. Its anionic properties play a crucial role in its interaction with positively charged macromolecules and ions. Among these macromolecules, positively charged arginine molecules or polyarginine peptides demonstrate potential in drug delivery when complexed with hyaluronan. This study aimed to compare and elucidate the results of both experimental and computational investigations on the interactions between hyaluronic acid polymers and polyarginine peptides. Experimental findings revealed that by varying the length of polyarginine peptides and the molar ratio, it is possible to modulate the size, solubility, and stability of hyaluronan-arginine particles. To further explore these interactions, molecular dynamics simulations were conducted to model the complexes formed between hyaluronic acid polymers and arginine peptides. The simulations are considered in different molar ratios and lengths of polyarginine peptides. By analysis of the data, we successfully determined the shape and size of the resulting complexes. Additionally, we identified the primary driving forces behind complex formation and explained the observed variations in peptide interactions with hyaluronan.


Asunto(s)
Ácido Hialurónico , Polímeros , Humanos , Ácido Hialurónico/química , Péptidos/química , Sustancias Macromoleculares , Arginina
2.
Gels ; 9(7)2023 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-37504469

RESUMEN

Ten different hydrogels were prepared and analyzed from the point of view of their use in soil. FT-IR spectra, morphology, swelling ability, and rheological properties were determined for their characterization and appraisal of their stability. The aim was to characterize prepared materials containing different amounts of NPK as mineral fertilizer, lignohumate as a source of organic carbon, and its combination. This study of stability was focused on utility properties in their application in soil-repeated drying/re-swelling cycles and possible freezing in winter. Lignohumate supported the water absorbency, while the addition of NPK caused a negative effect. Pore sizes decreased with NPK addition. Lignohumate incorporated into polymers resulted in a much miscellaneous structure, rich in different pores and voids of with a wide range of sizes. NPK fertilizer supported the elastic character of prepared materials, while the addition of lignohumate shifted their rheological behavior to more liquid. Both dynamic moduli decreased in time. The most stable samples appeared to contain only one fertilizer constituent (NPK or lignohumate). Repeated re-swelling resulted in an increase in elastic character, which was connected with the gradual release of fertilizers. A similar effect was observed with samples that were frozen and defrosted, except samples containing a higher amount of NPK without lignohumate. A positive effect of acrylamide on superabsorbent properties was not confirmed.

3.
Gels ; 9(5)2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37232959

RESUMEN

Transport properties are one of the most crucial assets of hydrogel samples, influencing their main application potential, i.e., as drug carriers. Depending on the type of drug or the application itself, it is very important to be able to control these transport properties in an appropriate manner. This study seeks to modify these properties by adding amphiphiles, specifically lecithin. Through its self-assembly, lecithin modifies the inner structure of the hydrogel, which affects its properties, especially the transport ones. In the proposed paper, these properties are studied mainly using various probes (organic dyes) to effectively simulate drugs in simple release diffusion experiments controlled by UV-Vis spectrophotometry. Scanning electron microscopy was used to help characterize the diffusion systems. The effects of lecithin and its concentrations, as well as the effects of variously charged model drugs, were discussed. Lecithin decreases the values of the diffusion coefficient independently of the dye used and the type of crosslinking. The ability to influence transport properties is better observed in xerogel samples. The results, complementing previously published conclusions, showed that lecithin can alter a hydrogel's structure and therefore its transport properties.

4.
Int J Biol Macromol ; 227: 786-794, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36549616

RESUMEN

Interactions between hyaluronan and the antimicrobial peptide cecropin B were studied in water and PBS using high-resolution ultrasonic spectroscopy and isothermal titration calorimetry. Although each technique is fundamentally different, they both gave identical results. It was found that the molecular weight of hyaluronan plays an important role in the interactions - in particular, the transition between the rod conformation and the random coil conformation. In water, interactions were saturated in a molar charge ratio of 1.5 and not 1.0 as expected. The later saturation of the interaction probably occurred either for steric reasons or due to the interaction between functional groups in the cecropin structure, which allowed complete dissociation of the antimicrobial peptide. In PBS, in contrast to water, no interactions were observed, irrespective of the molecular weight of hyaluronan. Thus, at a sufficiently high ionic strength, the interactions were suppressed.


Asunto(s)
Cecropinas , Ácido Hialurónico , Calorimetría/métodos , Agua/química , Reología , Termodinámica
5.
Int J Mol Sci ; 23(18)2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-36142429

RESUMEN

Self-balancing diffusion is a theoretical concept that restricts the introduction of extents of reactions. This concept is analyzed in detail for general mass- and molar-based balances of reaction-diffusion mixtures, in relation to non-self-balancing cases, and with respect to its practical consequences. Self-balancing is a mathematical restriction on the divergences of diffusion fluxes. Fulfilling this condition enables the proper introduction of the extents of (independent) reactions that reduce the number of independent variables in thermodynamic descriptions. A note on a recent generalization of the concept of reaction and diffusion extents is also included. Even in the case of self-balancing diffusion, such extents do not directly replace reaction rates. Concentration changes caused by reactions (not by diffusion) are properly described by rates of independent reactions, which are instantaneous descriptors. If an overall descriptor is needed, the traditional extents of reactions can be used, bearing in mind that they include diffusion-caused changes. On the other hand, rates of independent reactions integrated with respect to time provide another overall, but reaction-only-related descriptor.


Asunto(s)
Difusión , Cinética , Termodinámica
6.
Int J Biol Macromol ; 211: 107-115, 2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35568147

RESUMEN

Interactions of hyaluronan with micelles formed by cationic surfactants were studied by the time-resolved measurement of fluorescence resonance energy transfer (FRET) using perylene and fluorescein as probes. Two surfactants were studied - Cetyltrimethylammonium bromide (CTAB) and Septonex. In pure micellar solutions, the same values of FRET efficiency were found for both surfactants, but values for the binding of the probe pair were lower for Septonex micelles than in the case of CTAB. This was attributed to steric effects of the carbethoxy group in the Septonex polar head. Upon the addition of hyaluronan, decreased FRET efficiency and increased binding were detected in comparison with pure surfactants. To resolve the structure of the formed aggregates, steady state and time-resolved fluorescence anisotropy was employed as an additional technique. All results indicated that cationic micelles bind to hyaluronan forming a pearl necklace structure with micelles of smaller size compared to pure surfactant. Besides theoretical interest, the studied polyelectrolyte-surfactant system may be interesting for the formulation of drug delivery systems.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Micelas , Anisotropía , Cetrimonio , Ácido Hialurónico , Tensoactivos/química , Tensoactivos/farmacología
7.
RSC Adv ; 12(21): 13242-13250, 2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35520138

RESUMEN

In this work, hydrogels formed by interaction of biopolymeric electrolytes and oppositely charged surfactants are studied from the point of view of their ability to incorporate model hydrophobic dyes in their micelle-like structure. Two types of hydrogels were investigated. The first type was based on cationized dextran cross-linked by sodium dodecylsulphate. The second type was prepared by interactions of hyaluronan with carbethoxypendecinium bromide (septonex). Nile red and Atto488 were used as model dyes for the diffusion experiments. The dyes were dissolved in two different media: surfactant and physiological saline. The diffusion of dyes into hydrogel was monitored over time. Effective diffusion coefficients were determined. It was found that their values are strongly influenced by the hydrogel character, the types of dye used and the solvent. The obtained effective coefficients were higher in comparison with the values determined for the diffusion in the opposite direction (release from the hydrogel). The dyes are presented as free in physiological saline and in the form of micelles or micelle aggregates in surfactants. During diffusion into the hydrogel, they can be gradually incorporated in a "pearl necklace structure" which suppresses their mobility. In contrast, this partial immobilization of dyes can increase the concentration gradient which is a driving force of diffusion. Also, the gradual incorporation of dyes into hydrogel structures influences the values of the effective diffusion coefficients.

8.
Polymers (Basel) ; 14(5)2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35267689

RESUMEN

Gradient hydrogels are promising future materials which could be usable in tissue engineering (scaffolds), pharmaceutical (drug delivery systems with controlled release) and many others related disciplines. These hydrogels exhibit a more complex inner (gradient) structure (e.g., concentration gradient) than simple isotropic hydrogel. Gradient-structured hydrogels could be beneficial in, for example, understanding intercellular interactions. The fabrication of gradient hydrogels has been relatively deeply explored, but a comprehensive description of the physico-chemical techniques demonstrating the existence of a gradient structure is still missing. Here, we summarize the state-of-the-art available experimental techniques applicable in proving and/or describing in physico-chemical terms the inner gradient structure of hydrogels. The aim of this paper is to give the reader an overview of the existing database of suitable techniques for characterizing gradient hydrogels.

9.
Gels ; 8(2)2022 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-35200496

RESUMEN

Nowadays, hydrogels are found in many applications ranging from the industrial to the biological (e.g., tissue engineering, drug delivery systems, cosmetics, water treatment, and many more). According to the specific needs of individual applications, it is necessary to be able to modify the properties of hydrogel materials, particularly the transport and mechanical properties related to their structure, which are crucial for the potential use of the hydrogels in modern material engineering. Therefore, the possibility of preparing hydrogel materials with tunable properties is a very real topic and is still being researched. A simple way to modify these properties is to alter the internal structure by adding another component. The addition of natural substances is convenient due to their biocompatibility and the possibility of biodegradation. Therefore, this work focused on hydrogels modified by a substance that is naturally found in the tissues of our body, namely lecithin. Hydrogels were prepared by different types of crosslinking (physical, ionic, and chemical). Their mechanical properties were monitored and these investigations were supplemented by drying and rehydration measurements, and supported by the morphological characterization of xerogels. With the addition of natural lecithin, it is possible to modify crucial properties of hydrogels such as porosity and mechanical properties, which will play a role in the final applications.

10.
J Mater Chem B ; 9(39): 8308-8320, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34518864

RESUMEN

To develop materials for drug delivery and tissue engineering and to study their efficiency with respect to ossification, it is necessary to apply physicochemical and biological analyses. The major challenge is labor-intensive data mining during synthesis and the reproducibility of the obtained data. In this work, we investigated the influence of time and temperature on the reaction yield, the reaction rate, and the size, shape, and phase of the obtained product in the completely controllable synthesis of calcium carbonate. We show that calcium carbonate particles can be synthesized in large quantities, i.e., in gram quantities, which is a substantial advantage over previously reported synthesis methods. We demonstrated that the presence of vaterite particles can dramatically stimulate hydroxyapatite (HA) production by providing the continued release of the main HA component - calcium ions - depending on the following particle parameters: size, shape, and phase. To understand the key parameters influencing the efficiency of HA production by cells, we created a predictive model by means of principal component analysis. We found that smaller particles in the vaterite state are best suited for HA growth (HA growth was 8 times greater than that in the control). We also found that the reported dependence of cell adhesion on colloidal particles can be extended to other types of particles that contain calcium ions.


Asunto(s)
Carbonato de Calcio/química , Carbonato de Calcio/síntesis química , Hidroxiapatitas/metabolismo , Células 3T3 , Animales , Supervivencia Celular/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Hidroxiapatitas/química , Ratones , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Ingeniería de Tejidos
11.
Langmuir ; 37(28): 8525-8533, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34214390

RESUMEN

High-resolution ultrasound spectroscopy (HR-US), size and ζ-potential titrations, and isothermal titration calorimetry (ITC) were used to characterize the interactions between hyaluronan and catanionic ion pair amphiphile vesicles composed of hexadecyltrimethylammonium-dodecylsulphate (HTMA-DS), dioctadecyldimethylammonium chloride (DODAC), and cholesterol. In addition to these methods, visual observations were performed with the selected molecular weight of hyaluronan. A very good correlation was obtained between data from size titration, HR-US, and visual observation, which indicated in lower charge ratios the formation of hyaluronan-coated vesicles. On the contrary, at higher charge ratios, coated vesicles disintegrated to a size of around 2000 nm. The intensity of these interactions and the disaggregation were dependent on the molecular weight of hyaluronan. All interactions studied by ITC showed strong exothermic behavior, and these interactions between vesicles and hyaluronan were confirmed from the first addition, independently of the molecular weight of hyaluronan.


Asunto(s)
Ácido Hialurónico , Tensoactivos , Cationes , Cetrimonio , Colesterol
12.
Langmuir ; 37(7): 2436-2444, 2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33545006

RESUMEN

This work is focused on the study of the effect of cholesterol on the properties of vesicular membranes of ionic amphiphilic pairs at different temperatures. The hexadecyltrimethylammonium-dodecyl sulfate ionic amphiphilic pair system with the addition of 10 mol % dioctadecyldimethylammonium chloride was chosen for a detailed study of vesicle properties. A large range of cholesterol concentrations (0-73 mol %) in the temperature range 10-80 °C was studied. Under these conditions, the size distribution, the membrane fluidity, and the surface layer were monitored together with the change in the mobility of water in the surface layer. Obtained quantities were correlated with each other and combined into appropriate graphs. It was found that in stable systems that meet the condition of unimodal size distribution with a PDI value lower than 0.3, temperature has virtually no effect on the size of vesicular systems. On the contrary, when studying the hydration and fluidity of the membrane, significant changes in these parameters were found, which, however, do not affect the short-term stability of these vesicular systems. The presented results thus indicate the possibility of adjusting the composition of the vesicular system in terms of fluidity and membrane hydration while maintaining short-term stability and size distribution.


Asunto(s)
Colesterol , Fluidez de la Membrana , Cationes , Cetrimonio , Temperatura
13.
Molecules ; 26(3)2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33499305

RESUMEN

Autocatalytic reactions are in certain contrast with the linear algebra of reaction stoichiometry, on which rate equations respecting the permanence of atoms are constructed. These mathematical models of chemical reactions are called conservative. Using a non-equilibrium thermodynamics-based theory of chemical kinetics, it is shown how to introduce autocatalytic step into such (conservative) rate equation properly. Further, rate equations based on chemical potentials or affinities are derived, and conditions for the consistency of rate equations with the entropic inequality (the second law of thermodynamics) are illustrated. The theory illustrated here can be viewed as a tool for verifying and generalizing traditional mass-action kinetics by means of modern non-equilibrium thermodynamics, which is able to deal also with such rather problematic cases.


Asunto(s)
Modelos Químicos , Termodinámica , Catálisis , Fenómenos Químicos , Cinética , Conceptos Matemáticos
14.
Int J Biol Macromol ; 165(Pt B): 2419-2424, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33122057

RESUMEN

Ultrasound velocity was measured in hyaluronan solutions of various compositions at different temperatures. The velocity dependence on hyaluronan concentration at constant temperature (25 °C) was linear both in water and in 0.15 M NaCl regardless of hyaluronan molecular weight, confirming diluted-solution behavior. During cyclic heating and cooling, hysteresis on the temperature dependence of ultrasound velocity was observed in the range 30-55 °C in aqueous solutions for all molecular weights. In NaCl solutions, the hysteresis was suppressed and, in contrast to solutions in water where the velocity demonstrated a local maximum with temperature, the velocity decreased with increasing temperature. These findings were attributed to slow and hydration-linked hyaluronan conformation transitions during cooling in water, which were suppressed by the presence of salt, which makes hyaluronan's coiled conformation more compact.


Asunto(s)
Frío , Calefacción , Ácido Hialurónico/química , Reología , Ultrasonido , Agua/química , Iones , Soluciones
15.
Polymers (Basel) ; 12(9)2020 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-32932626

RESUMEN

High-resolution ultrasound spectroscopy and isothermal titration calorimetry were used to characterize interactions between hyaluronan and arginine oligomers. The molecular weight of arginine oligomer plays an important role in interactions with hyaluronan. Interactions were observable for arginine oligomers with eight monomer units and longer chains. The effect of the ionic strength and molecular weight of hyaluronan on interactions was tested. In an environment with increased ionic strength, the length of the arginine oligomer was crucial. Generally, sufficiently high ionic strength suppresses interactions between hyaluronan and arginine oligomers, which demonstrated interactions in water. From the point of view of the molecular weight of hyaluronan, the transition between the rod conformation and the random coil conformation appeared to be important.

16.
Polymers (Basel) ; 12(4)2020 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-32326192

RESUMEN

Gradient hydrogels refer to hydrogel materials with a gradual or abrupt change in one or some of their properties. They represent examples of more sophisticated gel materials in comparison to simple, native gel networks. Here, we review techniques used to prepare gradient hydrogels which have been reported in literature over the last few years. A variety of simple preparation methods are available, most of which can be relatively easily utilized in standard laboratories.

17.
Molecules ; 25(3)2020 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-32041273

RESUMEN

Molar balances of continuous and batch reacting systems with a simple reaction are analyzed from the point of view of finding relationships between the thermodynamic driving force and the chemical reaction rate. Special attention is focused on the steady state, which has been the core subject of previous similar work. It is argued that such relationships should also contain, besides the thermodynamic driving force, a kinetic factor, and are of a specific form for a specific reacting system. More general analysis is provided by means of the non-equilibrium thermodynamics of linear fluid mixtures. Then, the driving force can be expressed either in the Gibbs energy (affinity) form or on the basis of chemical potentials. The relationships can be generally interpreted in terms of force, resistance and flux.


Asunto(s)
Técnicas de Química Sintética/métodos , Cinética , Modelos Químicos , Fenómenos Físicos , Termodinámica
18.
Waste Manag ; 99: 1-11, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31454594

RESUMEN

The increasing numbers of kept horses create problems with processing horse manure as important local waste. This work was focused on horse manure vermicomposting in a real-field continuous-feeding system under controlled conditions, and on the complex study of the maturity and stability of the produced vermicompost. Commonly used simple indicators such as the C/N ratio, N-NH4+/N-NO3- ratio, DOC or ion exchange capacity, and also more advanced spectroscopic and thermoanalytic techniques were used and applied on the humic substances isolated from the vermicompost during its maturation (12 months in total). When compared with the original horse manure, vermicomposting decreased the aliphatic, protein-like, and polysaccharide humic components, whereas vermicomposting increased the aromaticity and contents of oxygen-containing functional groups. The typical tryptophan-like fluorophores in the manure, corresponding to the freshly produced organic matter of biological or microbial origin, were progressively transformed to humic-like fluorophores during vermicomposting. The most thermally labile humic fraction disappeared quickly during the very early vermicomposting stages. The results of spectroscopic and thermogravimetric analyses suggest that stable and mature vermicompost was produced after 6-9 months of vermicomposting, which was also supported by biologically-based maturity indicators.


Asunto(s)
Estiércol , Oligoquetos , Animales , Caballos , Sustancias Húmicas , Suelo
19.
Plant Methods ; 15: 83, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31384288

RESUMEN

BACKGROUND: Experimental determination of the extent and rate of transport of liquid humates supplied to plants is critical in testing physiological effects of such biostimulants which are often supplied as foliar sprays. Therefore, an original experimental method for the qualitative investigation and quantitative description of the penetration of humates through plant cuticles is proposed, tested, and evaluated. RESULTS: The proposed method involves the isolation of model plant leaf cuticles and the subsequent in vitro evaluation of cuticular humate transport. The employed novel methodology is based on a simple diffusion couple arrangement involving continuous spectrophotometric determination of the amount of penetrated humate in a hydrogel diffusion medium. Prunus laurocerasus leaf cuticles were isolated by chemical and enzymatic treatment and the rate of cuticular penetration of a commercial humate (lignohumate) was estimated over time in quantitative and qualitative terms. Different rates of lignohumate transport were determined for abaxial and adaxial leaf cuticles also in relation to the different cuticular extraction methods tested. CONCLUSIONS: The proposed methodology represents a simple and cheap experimental tool for the study on the trans-cuticular penetration of humic-based biostimulants.

20.
Carbohydr Polym ; 220: 163-169, 2019 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-31196536

RESUMEN

DEAE-dextran hydrochloride is a positively charged biocompatible polyelectrolyte. Its behaviour in aqueous solutions - the changes in its colloidal characteristics and resulting conformation changes - were investigated using a combination of light scattering, densitometry and ultrasound spectrometry. The results indicated the formation of a voluminous, hydrated and coiled conformation of chains having average particle sizes in the range of units of microns at low ionic strength. This phenomenon was supported by an increase in DEAE-dextran hydrochloride concentration in the solution. The increase in ionic strength caused the shielding of DEAE-dextran hydrochloride charges on its chain, resulting in the destabilization of the conformation arrangement of the polyelectrolyte and the formation of denser, more compact and stiffer structures having smaller particle sizes. The proposed model of DEAE-dextran hydrochloride density in the studied environments (distilled water, NaCl solutions) showed the possibility of using a single equation model to calculate the overall density of the system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA