Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chem Sci ; 12(33): 11146-11156, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34522312

RESUMEN

Photoinduced electron transfer into mesoporous oxide substrates is well-known to occur efficiently for both singlet and triplet excited states in conventional metal-to-ligand charge transfer (MLCT) dyes. However, in all-organic dyes that have the potential for producing two triplet states from one absorbed photon, called singlet fission dyes, the dynamics of electron injection from singlet vs. triplet excited states has not been elucidated. Using applied bias transient absorption spectroscopy with an anthradithiophene-based chromophore (ADT-COOH) adsorbed to mesoporous indium tin oxide (nanoITO), we modulate the driving force and observe changes in electron injection dynamics. ADT-COOH is known to undergo fast triplet pair formation in solid-state films. We find that the electronic coupling at the interface is roughly one order of magnitude weaker for triplet vs. singlet electron injection, which is potentially related to the highly localized nature of triplets without significant charge-transfer character. Through the use of applied bias on nanoITO:ADT-COOH films, we map the electron injection rate constant dependence on driving force, finding negligible injection from triplets at zero bias due to competing recombination channels. However, at driving forces greater than -0.6 eV, electron injection from the triplet accelerates and clearly produces a trend with increased applied bias that matches predictions from Marcus theory with a metallic acceptor.

2.
ACS Appl Mater Interfaces ; 12(36): 40339-40346, 2020 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-32810402

RESUMEN

Built-in electric fields at semiconductor junctions are vital for optoelectronic and photocatalytic applications since they govern the movement of photogenerated charge carriers near critical surfaces and interfaces. Here, we exploit transient photoreflectance (TPR) spectroscopy to probe the dynamical evolution of the built-in field for n-GaAs photoelectrodes upon photoexcitation. The transient fields are modeled in order to quantitatively describe the surface carrier dynamics that influence those fields. The photoinduced surface field at different types of junctions between n-GaAs and n-TiO2, Pt, electrolyte and p-NiO are examined, and the results reveal that surface Fermi-level pinning, ubiquitous for many GaAs surfaces, can have beneficial consequences that impact photoelectrochemical applications. That is, Fermi-level pinning results in the primary surface carrier dynamics being invariant to the contacting layer and promotes beneficial carrier separation. For example, when p-NiO is deposited there is no Fermi-level equilibration that modifies the surface field, but photogenerated holes are promoted to the n-GaAs/p-NiO interface and can transfer into defect midgap states within the p-NiO resulting in an elongated charge separation time and those transferred holes can participate in chemical reactions. In contrast, when the Fermi-level is unpinned via molecular surface functionalization on p-GaAs, the carriers undergo surface recombination faster due to a smaller built-in field, thus potentially degrading their photochemical performance.

3.
J Am Chem Soc ; 140(41): 13223-13232, 2018 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-30281296

RESUMEN

The design and fabrication of stable and efficient photoelectrochemical devices requires the use of multifunctional structures with complex heterojunctions composed of semiconducting, protecting, and catalytic layers. Understanding charge transport across such devices is challenging due to the interplay of bulk and interfacial properties. In this work, we analyze hole transfer across n-Si(111)- R|TiO2 photoanodes where - R is a series of mixed aryl/methyl monolayers containing an increasing number of methoxy units (mono, di, and tri). In the dimethoxy case, triethylene glycol units were also appended to substantially enhance the dipolar character of the surface. We find that hole transport is limited at the n-Si(111)- R|TiO2 interface and occurs by two processes- thermionic emission and/or intraband tunneling-where the interplay between them is regulated by the interfacial molecular dipole. This was determined by characterizing the photoanode experimentally (X-ray photoelectron spectroscopy, voltammetry, impedance) with increasingly thick TiO2 films and complementing the characterization with a multiscale computational approach (first-principles density functional theory (DFT) and finite-element device modeling). The tested theoretical model that successfully distinguished thermionic emission and intraband tunneling was then used to predict the effect of solution potential on charge transport. This prediction was then experimentally validated using a series of nonaqueous redox couples (ferrocence derivatives spanning 800 mV). As a result, this work provides a fundamental understanding of charge transport across TiO2-protected electrodes, a widely used semiconductor passivation scheme, and demonstrates the predictive capability of the combined DFT/device-modeling approach.

4.
Langmuir ; 34(22): 6328-6337, 2018 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-29782175

RESUMEN

We report the utility of controlled spacing of molecular monolayers on Si(111) surfaces by the use of sterically bulky silanes. The steric bulk of a 3,5-diphenolic linker of type Ph-diO-SiR3 (R = hexyl, phenyl, iPr)-as well as the smaller Ph-diOMe-is shown to control the surface coverage on Si(111). The para substituent was also changed from -F (small) to -OTf (triflate, large) to modulate the conformation of a selected bulky silane (SiR3; R = hexyl) to further control the steric environment of the monolayer. The surface coverage values are found to vary systematically from 57 → 21 → 15 → 11% for the series CH3 → hexyl → iPr → phenyl. Substitution at the para position (F → OTf) decreased the packing density for R = hexyl to as low as 8% (from 21%). The molecular coverage was also found to control the rate and extent of surface oxidation when unfunctionalized sites were allowed to oxidize. Following attachment, facile deprotection of the silanes was achieved by treatment with BBr3 to afford the diphenolic -OH groups. To electronically characterize the monolayers, voltammetry was performed in contact with liquid Hg to determine the barrier height, which was decreased by 70 mV as the coverage is increased. This study provides a synthetic rationale for controlling the packing density of surface linkers using electroless chemistry at semiconductor interfaces, thus providing further tunability and functionality of photoelectrochemical devices.

5.
J Phys Chem Lett ; 8(21): 5253-5258, 2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-28981282

RESUMEN

We present an impedance technique based on light intensity-modulated high-frequency resistivity (IMHFR) that provides a new way to elucidate both the thermodynamics and kinetics in complex semiconductor photoelectrodes. We apply IMHFR to probe electrode interfacial energetics on oxide-modified semiconductor surfaces frequently used to improve the stability and efficiency of photoelectrochemical water splitting systems. Combined with current density-voltage measurements, the technique quantifies the overpotential for proton reduction relative to its thermodynamic potential in Si photocathodes coated with three oxides (SiOx, TiO2, and Al2O3) and a Pt catalyst. In pH 7 electrolyte, the flatband potentials of TiO2- and Al2O3-coated Si electrodes are negative relative to samples with native SiOx, indicating that SiOx is a better protective layer against oxidative electrochemical corrosion than ALD-deposited crystalline TiO2 or Al2O3. Adding a Pt catalyst to SiOx/Si minimizes proton reduction overpotential losses but at the expense of a reduction in available energy characterized by a more negative flatband potential relative to catalyst-free SiOx/Si.

6.
Chem Commun (Camb) ; 51(68): 13264-7, 2015 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-25999134

RESUMEN

We demonstrate the covalent attachment and catalytic function of a nickel-phosphine H2 evolution catalyst to a p-Si(111) photoelectrode. The covalently assembled semiconductor|molecular construct achieves a synergistic improvement (ΔVonset = +200 mV) as compared to a solution of [(PNP)2Ni](2+) in contact with a p-Si(111)-CH3 photoelectrode.

7.
ACS Appl Mater Interfaces ; 7(16): 8572-84, 2015 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-25880534

RESUMEN

We report the preparation, stability, and utility of Si(111)-CH3 photoelectrodes protected with thin films of aluminum oxide (Al2O3) prepared by atomic layer deposition (ALD). The photoelectrodes have been characterized by X-ray photoelectron spectroscopy (XPS), photoelectrochemistry (Fc in MeCN, Fc-OH in H2O), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV) simulation. XPS analysis of the growing Al2O3 layer affords both the thickness, and information regarding two-dimensional versus three-dimensional mode of growth. Impedance measurements on Si(111)|CH3|Al2O3 devices reveal that the nascent films (5-30 Å) exhibit significant capacitance, which is attenuated upon surpassing the bulk threshold (∼30 Å). The Al2O3 layer provides enhanced photoelectrochemical (PEC) stability evidenced by an increase in the anodic window of operation in MeCN (up to +0.5 V vs Ag) and enhanced stability in aqueous electrolyte (up to +0.2 V vs Ag). XPS analysis before and after PEC confirms the Al2O3 layer is persistent and prevents surface corrosion (SiOx). Sweep-rate dependent CVs in MeCN at varying thicknesses exhibit a trend of increasingly broad features, characteristic of slow electron transport kinetics. Simulations were modeled as slow electron transfer through a partially resistive and electroactive Al2O3 layer. Lastly, we find that the Al2O3 ultrathin film serves as a support for the ALD deposition of Pt nanoparticles (d ≈ 8 nm) that enhance electron transfer through the Al2O3 layer. Surface recombination velocity (SRV) measurements on the assembled Si(111)|CH3|Al2O3-15 device affords an S value of 4170 cm s(-1) (τ = 4.2 µs) comparable to the bare Si(111)-CH3 surface (3950 cm s(-1); τ = 4.4 µs). Overall, the results indicate that high electronic quality and low surface defect densities can be retained throughout a multistep assembly of an integrated and passivated semiconductor|thin-film|metal device.

8.
J Am Chem Soc ; 137(9): 3173-6, 2015 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-25716423

RESUMEN

The efficient generation of dihydrogen on molecularly modified p-Si(111) has remained a challenge due to the low barrier heights observed on such surfaces. The band-edge and barrier height challenge is a primary obstruction to progress in the area of integration of molecular H2 electrocatalysts with silicon photoelectrodes. In this work, we demonstrate that an optimal combination of organic passivating agent and inorganic metal oxide leads to H2 evolution at photovoltages positive of RHE. Modulation of the passivating R group [CH3 → Ph → Naph → Anth → Ph(OMe)2] improves both the band-edge position and ΔV (Vonset - VJmax). Subsequent atomic layer deposition (ALD) of Al2O3 or TiO2 along with ALD-Pt deposition results in to our knowledge the first example of a positive H2 operating potential on molecularly modified Si(111). Mott-Schottky analyses reveal that the flat-band potential of the stable Ph(OMe)2 surface approaches that of the native (but unstable) hydride-terminated surface. The series resistance is diminished by the methoxy functional groups on the phenyl unit, due to its chemical and electronic connectivity with the TiO2 layer. Overall, judicious choice of the R group in conjunction with TiO2|Pt effects H2 generation on p-Si(111) photoelectrodes (Voc = 207 ± 5.2 mV; Jsc = -21.7 mA/cm(2); ff = 0.22; ηH2 = 0.99%). These results provide a viable hybrid strategy toward the operation of catalysts on molecularly modified p-Si(111).

9.
ACS Appl Mater Interfaces ; 6(22): 20557-68, 2014 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-25354387

RESUMEN

Surfaces with high photoelectrochemical and electronic quality can be prepared by tethering small molecules to single-crystalline Si(111) surfaces using a two-step halogenation/alkylation method (by Lewis and co-workers).1-7 We report here that the surface coverage of custom-synthesized, phenyl-based molecular linkers can be controlled by varying the steric size of R-groups (R=CH3, C6H11, 2-ethylhexyl) at the periphery of the linker. Additionally, the linkers possess a para triflate group (-O2SCF3) that serves as a convenient analytical marker and as a point of covalent attachment for a redox active label. Quantitative X-ray photoelectron spectroscopy (XPS) measurements revealed that the surface coverage systematically varies according to the steric size of the linker: CH3 (6.7±0.8%), CyHex (2.9±1.2%), EtHex (2.1±0.9%). The stability of the photoelectrochemical cyclic voltammetry (PEC-CV) behavior was dependent on an additional methylation step (with CH3MgCl) to passivate residual Si(111)-Cl bonds. Subsequently, the triflate functional group was utilized to perform Pd-catalyzed Heck coupling of vinylferrocene to the surface-attached linkers. Ferrocene surface coverages measured from cyclic voltammetry on the ferrocene-functionalized surfaces Si(111)-8a/CH3-Fc (R=CH3) and Si(111)-8c/CH3-Fc (R=2-EtHex) are consistent with the corresponding Fe 2p XPS coverages and suggest a ∼1:1 conversion of surface triflate groups to vinyl-Fc sites. The surface defect densities of the linker/CH3 modified surfaces are dependent on the coverage and composition of the organic layer. Surface recombination velocity (SRV) measurements indicated that n-Si(111)-8a/CH3 and the ferrocene coupled n-Si(111)-8a/CH3-Fc exhibited relatively high surface carrier lifetimes (4.51 and 3.88 µs, respectively) and correspondingly low S values (3880 and 4510 cm s(-1)). Thus, the multistep, linker/Fc functionalized surfaces exhibit analogously low trap state densities as compared to the fully passivated n-Si(111)-CH3 surface.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...