Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38703881

RESUMEN

Intracellular antioxidant glutaredoxin controls cell proliferation and survival. Based on the active site, structure, and conserved domain motifs, it is classified into two classes. Class I contains dithiol Grxs with two cysteines in the consensus active site sequence CXXC, while class II has monothiol Grxs with one cysteine residue in the active site. Monothiol Grxs can also have an additional N-terminal thioredoxin (Trx)-like domain. Previously, we reported the characterization of Grx1 from Hydra vulgaris (HvGrx1), which is a dithiol isoform. Here, we report the molecular cloning, expression, analysis, and characterization of another isoform of Grx, which is the multidomain monothiol glutaredoxin-3 from Hydra vulgaris (HvGrx3). It encodes a protein with 303 amino acids and is significantly larger and more divergent than HvGrx1. In-silico analysis revealed that Grx1 and Grx3 have 22.5% and 9.9% identical nucleotide and amino acid sequences, respectively. HvGrx3 has two glutaredoxin domains and a thioredoxin-like domain at its amino terminus, unlike HvGrx1, which has a single glutaredoxin domain. Like other monothiol glutaredoxins, HvGrx3 failed to reduce glutathione-hydroxyethyl disulfide. In the whole Hydra, HvGrx3 was found to be expressed all over the body column, and treatment with H2O2 led to a significant upregulation of HvGrx3. When transfected in HCT116 (human colon cancer cells) cells, HvGrx3 enhanced cell proliferation and migration, indicating that this isoform could be involved in these cellular functions. These transfected cells also tolerate oxidative stress better.


Asunto(s)
Secuencia de Aminoácidos , Glutarredoxinas , Hydra , Animales , Glutarredoxinas/metabolismo , Glutarredoxinas/genética , Glutarredoxinas/química , Hydra/genética , Hydra/metabolismo , Hydra/enzimología , Humanos , Clonación Molecular , Dominios Proteicos , Filogenia , Proliferación Celular
2.
Aging Biol ; 12024.
Artículo en Inglés | MEDLINE | ID: mdl-38500536

RESUMEN

There is considerable interest in whether sensory deficiency is associated with the development of Alzheimer's disease (AD). Notably, the relationship between hearing impairment and AD is of high relevance but still poorly understood. In this study, we found early-onset hearing loss in two AD mouse models, 3xTgAD and 3xTgAD/Polß+/-. The 3xTgAD/Polß+/- mouse is DNA repair deficient and has more humanized AD features than the 3xTgAD. Both AD mouse models showed increased auditory brainstem response (ABR) thresholds between 16 and 32 kHz at 4 weeks of age, much earlier than any AD cognitive and behavioral changes. The ABR thresholds were significantly higher in 3xTgAD/Polß+/- mice than in 3xTgAD mice at 16 kHz, and distortion product otoacoustic emission signals were reduced, indicating that DNA damage may be a factor underlying early hearing impairment in AD. Poly ADP-ribosylation and protein expression levels of DNA damage markers increased significantly in the cochlea of the AD mice but not in the adjacent auditory cortex. Phosphoglycerate mutase 2 levels and the number of synaptic ribbons in the presynaptic zones of inner hair cells were decreased in the cochlea of the AD mice. Furthermore, the activity of sirtuin 3 was downregulated in the cochlea of these mice, indicative of impaired mitochondrial function. Taken together, these findings provide new insights into potential mechanisms for hearing dysfunction in AD and suggest that DNA damage in the cochlea might contribute to the development of early hearing loss in AD.

3.
Biochemistry (Mosc) ; 88(5): 667-678, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37331712

RESUMEN

Glutaredoxin (Grx) is an antioxidant redox protein that uses glutathione (GSH) as an electron donor. Grx plays a crucial role in various cellular processes, such as antioxidant defense, control of cellular redox state, redox control of transcription, reversible S-glutathionylation of specific proteins, apoptosis, cell differentiation, etc. In the current study, we have isolated and characterized dithiol glutaredoxin from Hydra vulgaris Ind-Pune (HvGrx1). Sequence analysis showed that HvGrx1 belongs to the Grx family with the classical Grx motif (CPYC). Phylogenetic analysis and homology modeling revealed that HvGrx1 is closely related to Grx2 from zebrafish. HvGrx1 gene was cloned and expressed in Escherichia coli cells; the purified protein had a molecular weight of 11.82 kDa. HvGrx1 efficiently reduced ß-hydroxyethyl disulfide (HED) with the temperature optimum of 25°C and pH optimum 8.0. HvGrx1 was ubiquitously expressed in all body parts of Hydra. Expression of HvGrx1 mRNA and enzymatic activity of HvGrx1 were significantly upregulated post H2O2 treatment. When expressed in human cells, HvGrx1 protected the cells from oxidative stress and enhanced cell proliferation and migration. Although Hydra is a simple invertebrate, HvGrx1 is evolutionary closer to its homologs from higher vertebrates (similar to many other Hydra proteins).


Asunto(s)
Glutarredoxinas , Hydra , Animales , Humanos , Glutarredoxinas/genética , Glutarredoxinas/química , Glutarredoxinas/metabolismo , Hydra/genética , Hydra/metabolismo , Antioxidantes/metabolismo , Filogenia , Peróxido de Hidrógeno , Pez Cebra/metabolismo , India , Proteínas/química , Oxidación-Reducción , Glutatión/metabolismo
5.
Free Radic Biol Med ; 203: 34-44, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37011700

RESUMEN

Aging is accompanied by a decline in DNA repair efficiency, which leads to the accumulation of different types of DNA damage. Age-associated chronic inflammation and generation of reactive oxygen species exacerbate the aging process and age-related chronic disorders. These inflammatory processes establish conditions that favor accumulation of DNA base damage, especially 8-oxo-7,8 di-hydroguanine (8-oxoG), which in turn contributes to various age associated diseases. 8-oxoG is repaired by 8-oxoG glycosylase1 (OGG1) through the base excision repair (BER) pathway. OGG1 is present in both the cell nucleus and in mitochondria. Mitochondrial OGG1 has been implicated in mitochondrial DNA repair and increased mitochondrial function. Using transgenic mouse models and cell lines that have been engineered to have enhanced expression of mitochondria-targeted OGG1 (mtOGG1), we show that elevated levels of mtOGG1 in mitochondria can reverse aging-associated inflammation and improve functions. Old male mtOGG1Tg mice show decreased inflammation response, decreased TNFα levels and multiple pro-inflammatory cytokines. Moreover, we observe that male mtOGG1Tg mice show resistance to STING activation. Interestingly, female mtOGG1Tg mice did not respond to mtOGG1 overexpression. Further, HMC3 cells expressing mtOGG1 display decreased release of mtDNA into the cytoplasm after lipopolysacchride induction and regulate inflammation through the pSTING pathway. Also, increased mtOGG1 expression reduced LPS-induced loss of mitochondrial functions. These results suggest that mtOGG1 regulates age-associated inflammation by controlling release of mtDNA into the cytoplasm.


Asunto(s)
ADN Glicosilasas , ADN Mitocondrial , Animales , Femenino , Masculino , Ratones , Daño del ADN , ADN Glicosilasas/genética , ADN Glicosilasas/metabolismo , Reparación del ADN , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Inflamación/genética , Inflamación/metabolismo , Ratones Transgénicos , Mitocondrias/genética , Mitocondrias/metabolismo , Enfermedades Neuroinflamatorias , Estrés Oxidativo/genética , Humanos
6.
Biochem Biophys Res Commun ; 637: 23-31, 2022 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-36375247

RESUMEN

Thioredoxin (Trx) and glutathione disulfide (GSSG), are regenerated in reduced state by thioredoxin reductase (TrxR) and glutathione reductase (GR) respectively. A novel protein thioredoxin glutathione reductase (TGR) capable of reducing Trx as well as GSSG, linking two redox systems, has only been reported so far from parasitic flat worms and mammals. For the first time, we report a multifunctional antioxidant enzyme TGR from the nonparasitic, nonmammalian cnidarian Hydra vulgaris (HvTGR) which is a selenoprotein with unusual fusion of a TrxR domain with glutaredoxin (Grx) domain. We have cloned and sequenced HvTGR which encodes a polypeptide of 73 kDa. It contains conserved sequence CPYC of Grx domain, and CVNVGC and GCUG domains of thioredoxin reductase. Phylogenetic analysis revealed HvTGR to be closer to TGR from mammals rather than to TGR from parasitic helminths. We then subcloned HvTGR in plasmid pSelExpress-1 and expressed it in HEK293T cells to ensure selenocysteine incorporation. Purified HvTGR showed Grx, glutathione reductase and TrxR activities. Both thioredoxin and GSSG disulfide reductase activities were inhibited by 1-Chloro-2,4-dinitrobenzene (DNCB) supporting the existence of an essential selenocysteine residue. HvTGR expression was induced in response to H2O2 in Hydra. Interestingly, inhibition of HvTGR by DNCB, inhibited regeneration in Hydra indicating its involvement in other cellular processes.


Asunto(s)
Hydra , Reductasa de Tiorredoxina-Disulfuro , Animales , Humanos , Reductasa de Tiorredoxina-Disulfuro/genética , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Glutatión Reductasa/genética , Glutatión Reductasa/metabolismo , Hydra/genética , Hydra/metabolismo , Selenocisteína/química , Selenocisteína/metabolismo , Disulfuro de Glutatión/metabolismo , Peróxido de Hidrógeno , Filogenia , Dinitroclorobenceno , Células HEK293 , Glutatión/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Oxidación-Reducción , Antioxidantes/metabolismo , Mamíferos/metabolismo
7.
J Biochem ; 171(1): 41-51, 2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-34523686

RESUMEN

Thioredoxins, small disulphide-containing redox proteins, play an important role in the regulation of cellular thiol redox balance through their disulfide reductase activity. In this study, we have identified, cloned, purified and characterized thioredoxin 1 (HvTrx1) from the Cnidarian Hydra vulgaris Ind-Pune. Bioinformatics analysis revealed that HvTrx1 contains an evolutionarily conserved catalytic active site Cys-Gly-Pro-Cys and shows a closer phylogenetic relationship with vertebrate Trx1. Optimum pH and temperature for enzyme activity of purified HvTrx1 was found to be pH 7.0 and 25°C, respectively. Enzyme activity decreased significantly at acidic or alkaline pH as well as at higher temperatures. HvTrx1 was found to be expressed ubiquitously in whole mount in situ hybridization. Treatment of Hydra with hydrogen peroxide (H2O2), a highly reactive oxidizing agent, led to a significant increase in gene expression and enzyme activity of Trx1. Further experiments using PX12, an inhibitor of Trx1, indicated that Trx1 plays an important role in regeneration in Hydra. Finally, by using growth assay in Escherichia coli and wound healing assay in human colon cancer cells, we demonstrate that HvTrx1 is functionally active in both prokaryotic and eukaryotic heterologous systems.


Asunto(s)
Cnidarios , Hydra , Animales , Clonación Molecular , Cnidarios/metabolismo , Humanos , Hydra/genética , Hydra/metabolismo , Peróxido de Hidrógeno , India , Oxidación-Reducción , Filogenia , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
8.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1865(10): 158777, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32755726

RESUMEN

AIMS: PPARγ is a crucial transcription factor involved in development of hepatic steatosis, an early stage of NAFLD. PPARγ is tightly regulated through various positive and negative regulators including miRNAs. In this study, we report for the first time miR-3666 as a negative regulator of PPARγ and its involvement in development of hepatic steatosis. METHODS: Binding of miR-3666 to regulate PPARγ was checked by luciferase assay and was confirmed by mutating PPARγ 3'UTR. Regulation of PPARγ was determined by overexpression of miR-3666 in HepG2 cells. Hepatic steatotic state in HepG2 cells was developed by exposure to excess palmitic acid and expression of PPARγ, miR-3666 and some PPARγ target and non-target genes was checked. Involvement of mir-3666 by regulating PPARγ in hepatic steatosis was also examined in liver of HFD fed mice. RESULTS: On overexpression of miR-3666, PPARγ expression decreased significantly in a dose-dependent manner in HepG2 cells. Binding of miR-3666 to PPARγ was confirmed as the luciferase activity using pMIR-REPORT with PPARγ 3'UTR decreased in PA treated HepG2 cells overexpressing miR-3666 and remained unchanged when PPARγ 3'UTR was mutated. In PA treated HepG2 cells during development of hepatic steatosis PPARγ was significantly up-regulated concomitant with down-regulation of miR-3666. Overexpression of miR-3666 in these cells decreased the extent of hepatic steatosis. Significant up-regulation of PPARγ and down-regulation of miR-3666 was also observed in liver of HFD fed mice indicating that miR-3666 regulates PPARγ in vivo. CONCLUSIONS: miR-3666 negatively regulates PPARγ by binding to its 3'UTR during development of hepatic steatosis.


Asunto(s)
Hígado Graso/genética , MicroARNs/genética , Enfermedad del Hígado Graso no Alcohólico/genética , PPAR gamma/genética , Regiones no Traducidas 3'/genética , Animales , Hígado Graso/metabolismo , Hígado Graso/patología , Regulación de la Expresión Génica/genética , Células Hep G2 , Humanos , Hígado/metabolismo , Hígado/patología , Ratones , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Ácido Palmítico/metabolismo
9.
J Biochem Mol Toxicol ; 34(11): e22577, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32627281

RESUMEN

Reactive oxygen species (ROS) are necessary for various cellular processes. However, excess ROS cause damage to many biological molecules and therefore must be tightly regulated in time and space. Hydrogen peroxide (H2 O2 ) is the most commonly used ROS as second messenger in the cell. It is a relatively long-lived freely diffusible signaling molecule during early events of injury. In the Cnidarian hydra, injury-induced ROS production is essential for regeneration to proceed. In the present study, we have examined influence of varying exposure to H2 O2 on head and foot regeneration in the middlepieces of trisected hydra. We find that longer (4 hours) exposure to 1 mM H2 O2 inhibits both head and foot regeneration while shorter exposure (2 hours) does not. Longer exposure to H2 O2 resulted in extensive damage to DNA that could not be repaired, probably due to suboptimal induction of APE1, an enzyme necessary for base excision repair (BER). Concomitantly, genes involved in activation of Wnt pathway, necessary for head regeneration, were significantly downregulated. This appeared to be due to failure of both stabilization and transient nuclear localization of ß-catenin. Similarly, genes involved in foot regeneration were also downregulated on longer exposure to H2 O2 . Thus, exposure to excess ROS inhibits regenerative processes in hydra through reduced expression of genes involved in regeneration and diminished DNA repair.


Asunto(s)
Reparación del ADN/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Genes Esenciales , Hydra/efectos de los fármacos , Peróxido de Hidrógeno/toxicidad , Regeneración/efectos de los fármacos , Animales , Hydra/fisiología
10.
DNA Repair (Amst) ; 59: 44-56, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28946035

RESUMEN

Only mammalian apurinic/apyrimidinic endonuclease1 (APE1) has been reported to possess both DNA repair and redox activities. C terminal of the protein is required for base excision repair, while the redox activity resides in the N terminal due to cysteine residues at specific positions. APE1s from other organisms studied so far lack the redox activity in spite of having the N terminal domain. We find that APE1 from the Cnidarian Hydra exhibits both endonuclease and redox activities similar to mammalian APE1. We further show the presence of the three indispensable cysteines in Hydra APE1 for redox activity by site directed mutagenesis. Importance of redox domain but not the repair domain of APE1 in regeneration has been demonstrated by using domain-specific inhibitors. Our findings clearly demonstrate that the redox function of APE1 evolved very early in metazoan evolution and is not a recent acquisition in mammalian APE1 as believed so far.


Asunto(s)
ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Hydra/enzimología , Transducción de Señal , Homología Estructural de Proteína , Animales , Secuencia de Bases , Cisteína , ADN/metabolismo , Reparación del ADN , ADN-(Sitio Apurínico o Apirimidínico) Liasa/química , Humanos , Modelos Moleculares , Oxidación-Reducción , Filogenia , Dominios Proteicos , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...