Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Biology (Basel) ; 12(7)2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37508421

RESUMEN

Juvenile Idiopathic Arthritis (JIA) represents the most common chronic pediatric arthritis in Western countries and a leading cause of disability in children. Despite recent clinical achievements, patient management is still hindered by a lack of diagnostic/prognostic biomarkers and targeted treatment protocols. MicroRNAs (miRNAs) are short non-coding RNAs playing a key role in gene regulation, and their involvement in many pathologies has been widely reported in the literature. In recent decades, miRNA's contribution to the regulation of the immune system and the pathogenesis of autoimmune diseases has been demonstrated. Furthermore, miRNAs isolated from patients' biological samples are currently under investigation for their potential as novel biomarkers. This review aims to provide an overview of the state of the art on miRNA investigation in JIA. The literature addressing the expression of miRNAs in different types of biological samples isolated from JIA patients was reviewed, focusing in particular on their potential application as diagnostic/prognostic biomarkers. The role of miRNAs in the regulation of immune responses in affected joints will also be discussed along with their potential utility as markers of patients' responses to therapeutic approaches. This information will be of value to investigators in the field of pediatric rheumatology, encouraging further research to increase our knowledge of miRNAs' potential for future clinical applications in JIA.

2.
Front Immunol ; 14: 1134747, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37205098

RESUMEN

Introduction: New early low-invasive biomarkers are demanded for the management of Oligoarticular Juvenile Idiopathic Arthritis (OJIA), the most common chronic pediatric rheumatic disease in Western countries and a leading cause of disability. A deeper understanding of the molecular basis of OJIA pathophysiology is essential for identifying new biomarkers for earlier disease diagnosis and patient stratification and to guide targeted therapeutic intervention. Proteomic profiling of extracellular vesicles (EVs) released in biological fluids has recently emerged as a minimally invasive approach to elucidate adult arthritis pathogenic mechanisms and identify new biomarkers. However, EV-prot expression and potential as biomarkers in OJIA have not been explored. This study represents the first detailed longitudinal characterization of the EV-proteome in OJIA patients. Methods: Fourty-five OJIA patients were recruited at disease onset and followed up for 24 months, and protein expression profiling was carried out by liquid chromatography-tandem mass spectrometry in EVs isolated from plasma (PL) and synovial fluid (SF) samples. Results: We first compared the EV-proteome of SF vs paired PL and identified a panel of EV-prots whose expression was significantly deregulated in SF. Interaction network and GO enrichment analyses performed on deregulated EV-prots through STRING database and ShinyGO webserver revealed enrichment in processes related to cartilage/bone metabolism and inflammation, suggesting their role in OJIA pathogenesis and potential value as early molecular indicators of OJIA development. Comparative analysis of the EV-proteome in PL and SF from OJIA patients vs PL from age/gender-matched control children was then carried out. We detected altered expression of a panel of EV-prots able to differentiate new-onset OJIA patients from control children, potentially representing a disease-associated signature measurable at both the systemic and local levels with diagnostic potential. Deregulated EV-prots were significantly associated with biological processes related to innate immunity, antigen processing and presentation, and cytoskeleton organization. Finally, we ran WGCNA on the SF- and PL-derived EV-prot datasets and identified a few EV-prot modules associated with different clinical parameters stratifying OJIA patients in distinct subgroups. Discussion: These data provide novel mechanistic insights into OJIA pathophysiology and an important contribution in the search of new candidate molecular biomarkers for the disease.


Asunto(s)
Artritis Juvenil , Vesículas Extracelulares , Adulto , Humanos , Niño , Líquido Sinovial , Proteoma , Proteómica , Biomarcadores , Vesículas Extracelulares/patología
4.
Int J Mol Sci ; 23(18)2022 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-36142455

RESUMEN

Human-induced pluripotent stem cells (hiPSCs) represent one of the main and powerful tools for the in vitro modeling of neurological diseases. Standard hiPSC-based protocols make use of animal-derived feeder systems to better support the neuronal differentiation process. Despite their efficiency, such protocols may not be appropriate to dissect neuronal specific properties or to avoid interspecies contaminations, hindering their future translation into clinical and drug discovery approaches. In this work, we focused on the optimization of a reproducible protocol in feeder-free conditions able to generate functional glutamatergic neurons. This protocol is based on a generation of neuroprecursor cells differentiated into human neurons with the administration in the culture medium of specific neurotrophins in a Geltrex-coated substrate. We confirmed the efficiency of this protocol through molecular analysis (upregulation of neuronal markers and neurotransmitter receptors assessed by gene expression profiling and expression of the neuronal markers at the protein level), morphological analysis, and immunfluorescence detection of pre-synaptic and post-synaptic markers at synaptic boutons. The hiPSC-derived neurons acquired Ca2+-dependent glutamate release properties as a hallmark of neuronal maturation. In conclusion, our study describes a new methodological approach to achieve feeder-free neuronal differentiation from hiPSC and adds a new tool for functional characterization of hiPSC-derived neurons.


Asunto(s)
Ácido Glutámico , Células Madre Pluripotentes Inducidas , Animales , Diferenciación Celular/genética , Ácido Glutámico/metabolismo , Humanos , Factores de Crecimiento Nervioso/metabolismo , Neuronas/metabolismo , Receptores de Neurotransmisores/metabolismo
5.
Int J Mol Sci ; 23(4)2022 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-35216441

RESUMEN

BACKGROUND: Roles of astrocytes in the modulatory effects of oxytocin (OT) in central nervous system are increasingly considered. Nevertheless, OT effects on gliotransmitter release have been neglected. METHODS: In purified astrocyte processes from adult rat striatum, we assessed OT receptor (OTR) and adenosine A2A receptor expression by confocal analysis. The effects of receptors activation on glutamate release from the processes were evaluated; A2A-OTR heteromerization was assessed by co-immunoprecipitation and PLA. Structure of the possible heterodimer of A2A and OT receptors was estimated by a bioinformatic approach. RESULTS: Both A2A and OT receptors were expressed on the same astrocyte processes. Evidence for A2A-OTR receptor-receptor interaction was obtained by measuring the release of glutamate: OT inhibited the evoked glutamate release, while activation of A2A receptors, per se ineffective, abolished the OT effect. Biochemical and biophysical evidence for A2A-OTR heterodimers on striatal astrocytes was also obtained. The residues in the transmembrane domains 4 and 5 of both receptors are predicted to be mainly involved in the heteromerization. CONCLUSIONS: When considering effects of OT in striatum, modulation of glutamate release from the astrocyte processes and of glutamatergic synapse functioning, and the interaction with A2A receptors on the astrocyte processes should be taken into consideration.


Asunto(s)
Astrocitos/metabolismo , Ácido Glutámico/metabolismo , Receptor de Adenosina A2A/metabolismo , Receptores de Oxitocina/metabolismo , Animales , Cuerpo Estriado/metabolismo , Masculino , Neostriado/metabolismo , Oxitocina/metabolismo , Ratas , Ratas Sprague-Dawley
6.
Biomolecules ; 11(9)2021 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-34572487

RESUMEN

BACKGROUND: In the brain, polyamines are mainly synthesized in neurons, but preferentially accumulated in astrocytes, and are proposed to be involved in neurodegenerative/neuroinflammatory disorders and neuron injury. A transgenic mouse overexpressing spermine oxidase (SMOX, which specifically oxidizes spermine) in the neocortex neurons (Dach-SMOX mouse) was proved to be a model of increased susceptibility to excitotoxic injury. METHODS: To investigate possible alterations in synapse functioning in Dach-SMOX mouse, both cerebrocortical nerve terminals (synaptosomes) and astrocytic processes (gliosomes) were analysed by assessing polyamine levels, ezrin and vimentin content, glutamate AMPA receptor activation, calcium influx, and catalase activity. RESULTS: The main findings are as follows: (i) the presence of functional calcium-permeable AMPA receptors in synaptosomes from both control and Dach-SMOX mice, and in gliosomes from Dach-SMOX mice only; (ii) reduced content of spermine in gliosomes from Dach-SMOX mice; and (iii) down-regulation and up-regulation of catalase activity in synaptosomes and gliosomes, respectively, from Dach-SMOX mice. CONCLUSIONS: Chronic activation of SMOX in neurons leads to major changes in the astrocyte processes including reduced spermine levels, increased calcium influx through calcium-permeable AMPA receptors, and stimulation of catalase activity. Astrocytosis and the astrocyte process alterations, depending on chronic activation of polyamine catabolism, result in synapse dysregulation and neuronal suffering.


Asunto(s)
Gliosis/metabolismo , Gliosis/patología , Poliaminas/metabolismo , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Astrocitos/patología , Calcio/metabolismo , Catalasa/metabolismo , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Proteínas del Citoesqueleto/metabolismo , Modelos Animales de Enfermedad , Ratones , Ratones Transgénicos , Terminaciones Nerviosas/efectos de los fármacos , Terminaciones Nerviosas/metabolismo , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Receptores AMPA/metabolismo , Espermina/análogos & derivados , Espermina/metabolismo , Espermina/farmacología , Sinaptosomas/efectos de los fármacos , Sinaptosomas/metabolismo , Vimentina/metabolismo , Poliamino Oxidasa
7.
Life (Basel) ; 10(12)2020 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-33302569

RESUMEN

Preclinical studies highlighted that compounds targeting cannabinoid receptors could be useful for developing novel therapies against neurodegenerative disorders. However, the chronic use of orthosteric agonists alone has several disadvantages, limiting their usefulness as clinically relevant drugs. Positive allosteric modulators might represent a promising approach to achieve the potential therapeutic benefits of orthosteric agonists of cannabinoid receptors through increasing their activity and limiting their adverse effects. The aim of the present study was to show the effects of positive allosteric ligands of cannabinoid receptors on the activity of a potent dual orthosteric agonist for neuroinflammation and excitotoxic damage by excessive glutamate release. The results indicate that the combination of an orthosteric agonist with positive allosteric modulators could represent a promising therapeutic approach to the treatment of neurodegenerative disorders.

8.
Front Pharmacol ; 10: 1452, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31849688

RESUMEN

It is widely recognized that extracellular vesicles subserve non-classical signal transmission in the central nervous system. Here we assess if the astrocyte processes, that are recognized to play crucial roles in intercellular communication at the synapses and in neuron-astrocyte networks, could convey messages through extracellular vesicles. Our findings indicate, for the first time that freshly isolated astrocyte processes prepared from adult rat cerebral cortex, can indeed participate to signal transmission in central nervous system by releasing exosomes that by volume transmission might target near or long-distance sites. It is noteworthy that the exosomes released from the astrocyte processes proved ability to selectively target neurons. The astrocyte-derived exosomes were proven positive for neuroglobin, a protein functioning as neuroprotectant against cell insult; the possibility that exosomes might transfer neuroglobin to neurons would add a mechanism to the potential astrocytic neuroprotectant activity. Notably, the exosomes released from the processes of astrocytes maintained markers, which prove their parental astrocytic origin. This potentially allows the assessment of the cellular origin of exosomes that might be recovered from body fluids.

9.
Int J Mol Sci ; 20(10)2019 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-31109007

RESUMEN

Our previous findings indicate that A2A and D2 receptors are co-expressed on adult rat striatal astrocytes and on the astrocyte processes, and that A2A-D2 receptor⁻receptor interaction can control the release of glutamate from the processes. Functional evidence suggests that the receptor⁻receptor interaction was based on heteromerization of native A2A and D2 receptors at the plasma membrane of striatal astrocyte processes. We here provide biochemical and biophysical evidence confirming that receptor⁻receptor interaction between A2A and D2 receptors at the astrocyte plasma membrane is based on A2A-D2 heteromerization. To our knowledge, this is the first direct demonstration of the ability of native A2A and D2 receptors to heteromerize on glial cells. As striatal astrocytes are recognized to be involved in Parkinson's pathophysiology, the findings that adenosine A2A and dopamine D2 receptors can form A2A-D2 heteromers on the astrocytes in the striatum (and that these heteromers can play roles in the control of the striatal glutamatergic transmission) may shed light on the molecular mechanisms involved in the pathogenesis of the disease.


Asunto(s)
Astrocitos/metabolismo , Receptor de Adenosina A2A/metabolismo , Receptores de Dopamina D2/metabolismo , Animales , Membrana Celular/metabolismo , Cuerpo Estriado/metabolismo , Ácido Glutámico/metabolismo , Multimerización de Proteína , Ratas , Ratas Sprague-Dawley , Receptor de Adenosina A2A/química , Receptores de Dopamina D2/química
10.
J Mol Neurosci ; 65(4): 456-466, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30030763

RESUMEN

The interaction between adenosine A2A and dopamine D2 receptors in striatal neurons is a well-established phenomenon and has opened up new perspectives on the molecular mechanisms involved in Parkinson's disease. However, it has barely been investigated in astrocytes. Here, we show by immunofluorescence that both A2A and D2 receptors are expressed in adult rat striatal astrocytes in situ, and investigate on presence, function, and interactions of the receptors in the astrocyte processes-acutely prepared from the adult rat striatum-and on the effects of homocysteine on the A2A-D2 receptor-receptor interaction. We found that A2A and D2 receptors were co-expressed on vesicular glutamate transporter-1-positive astrocyte processes, and confirmed that A2A-D2 receptor-receptor interaction controlled glutamate release-assessed by measuring the [3H]D-aspartate release-from the processes. The complexity of A2A-D2 receptor-receptor interaction is suggested by the effect of intracellular homocysteine, which reduced D2-mediated inhibition of glutamate release (homocysteine allosteric action on D2), without interfering with the A2A-mediated antagonism of the D2 effect (maintained A2A-D2 interaction). Our findings indicate the crucial integrative role of A2A-D2 molecular circuits at the plasma membrane of striatal astrocyte processes. The fact that homocysteine reduced D2-mediated inhibition of glutamate release could provide new insights into striatal astrocyte-neuron intercellular communications. As striatal astrocytes are recognized to be involved in Parkinson's pathophysiology, these findings may shed light on the pathogenic mechanisms of the disease and contribute to the development of new drugs for its treatment.


Asunto(s)
Astrocitos/metabolismo , Cuerpo Estriado/metabolismo , Homocisteína/metabolismo , Receptor de Adenosina A2A/metabolismo , Receptores de Dopamina D2/metabolismo , Regulación Alostérica , Animales , Células Cultivadas , Cuerpo Estriado/citología , Ácido Glutámico/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley , Receptor de Adenosina A2A/genética , Receptores de Dopamina D2/genética
11.
Front Immunol ; 8: 1097, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28936211

RESUMEN

Macrophages (Mf) are a heterogeneous population of tissue-resident professional phagocytes and a major component of the leukocyte infiltrate at sites of inflammation, infection, and tumor growth. They can undergo diverse forms of activation in response to environmental factors, polarizing into specialized functional subsets. A common hallmark of the pathologic environment is represented by hypoxia. The impact of hypoxia on human Mf polarization has not been fully established. The objective of this study was to elucidate the effects of a hypoxic environment reflecting that occurring in vivo in diseased tissues on the ability of human Mf to polarize into classically activated (proinflammatory M1) and alternatively activated (anti-inflammatory M2) subsets. We present data showing that hypoxia hinders Mf polarization toward the M1 phenotype by decreasing the expression of T cell costimulatory molecules and chemokine homing receptors and the production of proinflammatory, Th1-priming cytokines typical of classical activation, while promoting their acquisition of phenotypic and secretory features of alternative activation. Furthermore, we identify the triggering receptor expressed on myeloid cells (TREM)-1, a member of the Ig-like immunoregulatory receptor family, as a hypoxia-inducible gene in Mf and demonstrate that its engagement by an agonist Ab reverses the M2-polarizing effect of hypoxia imparting a M1-skewed phenotype to Mf. Finally, we provide evidence that Mf infiltrating the inflamed hypoxic joints of children affected by oligoarticular juvenile idiopatic arthritis express high surface levels of TREM-1 associated with predominant M1 polarization and suggest the potential of this molecule in driving M1 proinflammatory reprogramming in the hypoxic synovial environment.

12.
J Mol Med (Berl) ; 94(8): 943-55, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26960761

RESUMEN

UNLABELLED: Langerhans cells (LCs) are a specialized dendritic cell subset that resides in the epidermis and mucosal epithelia and is critical for the orchestration of skin immunity. Recent evidence suggest that LCs are involved in aberrant wound healing and in the development of hypertrophic scars and chronic wounds, which are characterized by a hypoxic environment. Understanding LCs biology under hypoxia may, thus, lead to the identification of novel pathogenetic mechanisms of wound repair disorders and open new therapeutic opportunities to improve wound healing. In this study, we characterize a previously unrecognized role for hypoxia in significantly affecting the phenotype and functional properties of human monocyte-derived LCs, impairing their ability to stimulate naive T cell responses, and identify the triggering receptor expressed on myeloid (TREM)-1, a member of the Ig immunoregulatory receptor family, as a new hypoxia-inducible gene in LCs and an activator of their proinflammatory and Th1-polarizing functions in a hypoxic environment. Furthermore, we provide the first evidence of TREM-1 expression in vivo in LCs infiltrating hypoxic areas of active hypertrophic scars and decubitous ulcers, pointing to a potential pathogenic role of this molecule in wound repair disorders. KEY MESSAGES: Hypoxia modulates surface molecule expression and cytokine profile in Langerhans cells. Hypoxia impairs human Langerhans cell stimulatory activity on naive T cells. Hypoxia selectively induces TREM-1 expression in human Langerhans cells. TREM-1 engagement stimulates Langerhans cell inflammatory and Th1-polarizing activity. TREM-1 is expressed in vivo in Langerhans cells infiltrating hypoxic skin lesions.


Asunto(s)
Células de Langerhans/fisiología , Hipoxia de la Célula , Proliferación Celular , Células Cultivadas , Cicatriz Hipertrófica/inmunología , Cicatriz Hipertrófica/metabolismo , Cicatriz Hipertrófica/patología , Citocinas/metabolismo , Humanos , Activación de Linfocitos , Piel/inmunología , Piel/patología , Linfocitos T/fisiología , Receptor Activador Expresado en Células Mieloides 1/metabolismo
13.
BMC Bioinformatics ; 17(Suppl 12): 347, 2016 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-28185577

RESUMEN

BACKGROUND: More than fifty percent of neuroblastoma (NB) patients with adverse prognosis do not benefit from treatment making the identification of new potential targets mandatory. Hypoxia is a condition of low oxygen tension, occurring in poorly vascularized tissues, which activates specific genes and contributes to the acquisition of the tumor aggressive phenotype. We defined a gene expression signature (NB-hypo), which measures the hypoxic status of the neuroblastoma tumor. We aimed at developing a classifier predicting neuroblastoma patients' outcome based on the assessment of the adverse effects of tumor hypoxia on the progression of the disease. METHODS: Multi-layer perceptron (MLP) was trained on the expression values of the 62 probe sets constituting NB-hypo signature to develop a predictive model for neuroblastoma patients' outcome. We utilized the expression data of 100 tumors in a leave-one-out analysis to select and construct the classifier and the expression data of the remaining 82 tumors to test the classifier performance in an external dataset. We utilized the Gene set enrichment analysis (GSEA) to evaluate the enrichment of hypoxia related gene sets in patients predicted with "Poor" or "Good" outcome. RESULTS: We utilized the expression of the 62 probe sets of the NB-Hypo signature in 182 neuroblastoma tumors to develop a MLP classifier predicting patients' outcome (NB-hypo classifier). We trained and validated the classifier in a leave-one-out cross-validation analysis on 100 tumor gene expression profiles. We externally tested the resulting NB-hypo classifier on an independent 82 tumors' set. The NB-hypo classifier predicted the patients' outcome with the remarkable accuracy of 87 %. NB-hypo classifier prediction resulted in 2 % classification error when applied to clinically defined low-intermediate risk neuroblastoma patients. The prediction was 100 % accurate in assessing the death of five low/intermediated risk patients. GSEA of tumor gene expression profile demonstrated the hypoxic status of the tumor in patients with poor prognosis. CONCLUSIONS: We developed a robust classifier predicting neuroblastoma patients' outcome with a very low error rate and we provided independent evidence that the poor outcome patients had hypoxic tumors, supporting the potential of using hypoxia as target for neuroblastoma treatment.


Asunto(s)
Hipoxia/genética , Redes Neurales de la Computación , Neuroblastoma/genética , Femenino , Perfilación de la Expresión Génica , Humanos , Hipoxia/metabolismo , Hipoxia/mortalidad , Lactante , Estimación de Kaplan-Meier , Masculino , Neuroblastoma/metabolismo , Neuroblastoma/mortalidad , Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA