Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Thromb Haemost ; 22(3): 709-714, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38007061

RESUMEN

BACKGROUND: Coagulation factor (F)V features an A1-A2-B-A3-C1-C2 domain organization and functions as the inactive precursor of FVa, a component of the prothrombinase complex required for rapid thrombin generation in the penultimate step of the coagulation cascade. An intramolecular interaction within the large B domain (residues 710-1545) involves the basic region (BR, residues 963-1008) and acidic region (AR, residues 1493-1537) and locks FV in its inactive state. However, structural information on this important regulatory interaction or on the separate architecture of the AR and BR remains elusive due to conformational disorder of the B domain. OBJECTIVES: To reveal the structure of the BR-AR interaction or of its separate components. METHODS: The structure of FV is solved by cryogenic electron microscopy. RESULTS: A new 3.05 Å resolution cryogenic electron microscopy structure of FV confirms the overall organization of the A and C domains but resolves the segment 1507 to 1545 within a largely disordered B domain. The segment contains most of the AR and is organized as recently reported in FV short, a spliced variant of FV with a significantly shorter and less disordered B domain. CONCLUSION: The similar architecture of the AR in FV and FV short provides structural context for physiologically important interactions of this region with the BR in FV and with the basic C-terminal end of tissue factor pathway inhibitor α in FV short.


Asunto(s)
Coagulación Sanguínea , Factor V , Humanos , Factor V/metabolismo , Dominios Proteicos , Microscopía Electrónica
2.
J Thromb Haemost ; 22(4): 1009-1015, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38160728

RESUMEN

BACKGROUND: The residue at the site of activation of protein C is Arg in all species except the ray-finned fish, where it is Trp. This feature raises the question of whether thrombin is the physiological activator of protein C across vertebrates. OBJECTIVES: To establish if thrombin can cleave at Trp residues. METHODS: The activity of wild-type thrombin and mutant D189S was tested with a library of chromogenic substrates and toward wild-type protein C and mutants carrying substitutions at the site of cleavage. RESULTS: Thrombin has trypsin-like and chymotrypsin-like specificity and cleaves substrates at Arg or Trp residues. Cleavage at Arg is preferred, but cleavage at Trp is significant and comparable with that of chymotrypsin. The D189S mutant of thrombin has broad specificity and cleaves at basic and aromatic residues without significant preference. Thrombin also cleaves natural substrates at Arg or Trp residues, showing activity toward protein C across vertebrates, including the ray-finned fish. The rate of activation of protein C in the ray-finned fish is affected by the sequence preceding Trp at the scissile bond. CONCLUSION: The results provide a possible solution for the paradoxical presence of a Trp residue at the site of cleavage of protein C in ray-finned fish and support thrombin as the physiological activator of protein C in all vertebrates. The dual trypsin-like and chymotrypsin-like specificity of thrombin suggests that the spectrum of physiological substrates of this enzyme is broader currently assumed.


Asunto(s)
Quimotripsina , Trombina , Animales , Tripsina/química , Tripsina/metabolismo , Trombina/metabolismo , Quimotripsina/química , Quimotripsina/metabolismo , Proteína C/metabolismo , Especificidad por Sustrato , Cinética , Sitios de Unión
3.
Blood ; 141(26): 3215-3225, 2023 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-36862974

RESUMEN

Coagulation factor V (fV) is the precursor of activated fV (fVa), an essential component of the prothrombinase complex required for the rapid activation of prothrombin in the penultimate step of the coagulation cascade. In addition, fV regulates the tissue factor pathway inhibitor α (TFPIα) and protein C pathways that inhibit the coagulation response. A recent cryogenic electron microscopy (cryo-EM) structure of fV has revealed the architecture of its A1-A2-B-A3-C1-C2 assembly but left the mechanism that keeps fV in its inactive state unresolved because of an intrinsic disorder in the B domain. A splice variant of fV, fV short, carries a large deletion of the B domain that produces constitutive fVa-like activity and unmasks epitopes for the binding of TFPIα. The cryo-EM structure of fV short was solved at 3.2 Å resolution and revealed the arrangement of the entire A1-A2-B-A3-C1-C2 assembly. The shorter B domain stretches across the entire width of the protein, making contacts with the A1, A2, and A3 domains but suspended over the C1 and C2 domains. In the portion distal to the splice site, several hydrophobic clusters and acidic residues provide a potential binding site for the basic C-terminal end of TFPIα. In fV, these epitopes may bind intramolecularly to the basic region of the B domain. The cryo-EM structure reported in this study advances our understanding of the mechanism that keeps fV in its inactive state, provides new targets for mutagenesis and facilitates future structural analysis of fV short in complex with TFPIα, protein S, and fXa.


Asunto(s)
Factor V , Factor Xa , Factor V/metabolismo , Microscopía por Crioelectrón , Factor Xa/metabolismo , Factor Va/química , Coagulación Sanguínea , Epítopos
4.
Res Pract Thromb Haemost ; 6(7): e12830, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36349261

RESUMEN

A State of the Art lecture titled "Cryo-EM structures of coagulation factors" was presented at the ISTH Congress in 2022. Cryogenic electron microscopy (cryo-EM) is a revolutionary technique capable of solving the structure of high molecular weight proteins and their complexes, unlike nuclear magnetic resonance (NMR), and under conditions not biased by crystal contacts, unlike X-ray crystallography. These features are particularly relevant to the analysis of coagulation factors that are too big for NMR and often recalcitrant to X-ray investigation. Using cryo-EM, we have solved the structures of coagulation factors V and Va, prothrombinase on nanodiscs, and the prothrombin-prothrombinase complex. These structures have advanced basic knowledge in the field of thrombosis and hemostasis, especially on the function of factor V and the molecular mechanism for prothrombin activation, and set the stage for exciting new lines of investigation. Finally, we summarize relevant new data on this topic presented during the 2022 ISTH Congress.

5.
J Biol Chem ; 298(1): 101458, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34861239

RESUMEN

The catalytic activity of thrombin and other enzymes of the blood coagulation and complement cascades is enhanced significantly by binding of Na+ to a site >15 Å away from the catalytic residue S195, buried within the 180 and 220 loops that also contribute to the primary specificity of the enzyme. Rapid kinetics support a binding mechanism of conformational selection where the Na+-binding site is in equilibrium between open (N) and closed (N∗) forms and the cation binds selectively to the N form. Allosteric transduction of this binding step produces enhanced catalytic activity. Molecular details on how Na+ gains access to this site and communicates allosterically with the active site remain poorly defined. In this study, we show that the rate of the N∗→N transition is strongly correlated with the analogous E∗→E transition that governs the interaction of synthetic and physiologic substrates with the active site. This correlation supports the active site as the likely point of entry for Na+ to its binding site. Mutagenesis and structural data rule out an alternative path through the pore defined by the 180 and 220 loops. We suggest that the active site communicates allosterically with the Na+ site through a network of H-bonded water molecules that embeds the primary specificity pocket. Perturbation of the mobility of S195 and its H-bonding capabilities alters interaction with this network and influences the kinetics of Na+ binding and allosteric transduction. These findings have general mechanistic relevance for Na+-activated proteases and allosteric enzymes.


Asunto(s)
Sodio , Trombina , Sitios de Unión , Dominio Catalítico , Cationes , Cationes Monovalentes , Cinética , Modelos Moleculares , Conformación Proteica , Sodio/química , Sodio/metabolismo , Trombina/química , Trombina/metabolismo
6.
J Biol Chem ; 295(45): 15236-15244, 2020 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-32855236

RESUMEN

Activated protein C is a trypsin-like protease with anticoagulant and cytoprotective properties that is generated by thrombin from the zymogen precursor protein C in a reaction greatly accelerated by the cofactor thrombomodulin. The molecular details of this activation remain elusive due to the lack of structural information. We now fill this gap by providing information on the overall structural organization of these proteins using single molecule FRET and small angle X-ray scattering. Under physiological conditions, both zymogen and protease adopt a conformation with all domains vertically aligned along an axis 76 Å long and maximal particle size of 120 Å. This conformation is stabilized by binding of Ca2+ to the Gla domain and is affected minimally by interaction with thrombin. Hence, the zymogen protein C likely interacts with the thrombin-thrombomodulin complex through a rigid body association that produces a protease with essentially the same structural architecture. This scenario stands in contrast to an analogous reaction in the coagulation cascade where conversion of the zymogen prothrombin to the protease meizothrombin by the prothrombinase complex is linked to a large conformational transition of the entire protein. The presence of rigid epidermal growth factor domains in protein C as opposed to kringles in prothrombin likely accounts for the different conformational plasticity of the two zymogens. The new structural features reported here for protein C have general relevance to vitamin K-dependent clotting factors containing epidermal growth factor domains, such as factors VII, IX, and X.


Asunto(s)
Precursores Enzimáticos/química , Precursores Enzimáticos/metabolismo , Proteína C/química , Proteína C/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Humanos , Tamaño de la Partícula , Conformación Proteica , Dispersión del Ángulo Pequeño , Difracción de Rayos X
7.
Sci Rep ; 10(1): 11079, 2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32632109

RESUMEN

Protein C is a natural anticoagulant activated by thrombin in a reaction accelerated by the cofactor thrombomodulin. The zymogen to protease conversion of protein C involves removal of a short activation peptide that, relative to the analogous sequence present in other vitamin K-dependent proteins, contains a disproportionately high number of acidic residues. Through a combination of bioinformatic, mutagenesis and kinetic approaches we demonstrate that the peculiar clustering of acidic residues increases the intrinsic disorder propensity of the activation peptide and adversely affects the rate of activation. Charge neutralization of the acidic residues in the activation peptide through Ala mutagenesis results in a mutant activated by thrombin significantly faster than wild type. Importantly, the mutant is also activated effectively by other coagulation factors, suggesting that the acidic cluster serves a protective role against unwanted proteolysis by endogenous proteases. We have also identified an important H-bond between residues T176 and Y226 that is critical to transduce the inhibitory effect of Ca2+ and the stimulatory effect of thrombomodulin on the rate of zymogen activation. These findings offer new insights on the role of the activation peptide in the function of protein C.


Asunto(s)
Calcio/metabolismo , Factor Xa/farmacología , Fragmentos de Péptidos/farmacología , Proteína C/metabolismo , Trombina/farmacología , Secuencia de Aminoácidos , Anticoagulantes/metabolismo , Activación Enzimática , Humanos , Mutagénesis Sitio-Dirigida , Mutación , Proteína C/genética
8.
Blood ; 135(9): 689-699, 2020 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-31977000

RESUMEN

Although thrombin is a key enzyme in the coagulation cascade and is required for both normal hemostasis and pathologic thrombogenesis, it also participates in its own negative feedback via activation of protein C, which downregulates thrombin generation by enzymatically inactivating factors Va and VIIIa. Our group and others have previously shown that thrombin's procoagulant and anticoagulant activities can be effectively disassociated to varying extents through site-directed mutagenesis. The thrombin mutant W215A/E217A (WE thrombin) has been one of the best characterized constructs with selective activity toward protein C. Although animal studies have demonstrated that WE thrombin acts as an anticoagulant through activated protein C (APC) generation, the observed limited systemic anticoagulation does not fully explain the antithrombotic potency of this or other thrombin mutants. AB002 (E-WE thrombin) is an investigational protein C activator thrombin analog in phase 2 clinical development (clinicaltrials.gov NCT03963895). Here, we demonstrate that this molecule is a potent enzyme that is able to rapidly interrupt arterial-type thrombus propagation at exceedingly low doses (<2 µg/kg, IV), yet without substantial systemic anticoagulation in baboons. We demonstrate that AB002 produces APC on platelet aggregates and competitively inhibits thrombin-activatable fibrinolysis inhibitor (carboxypeptidase B2) activation in vitro, which may contribute to the observed in vivo efficacy. We also describe its safety and activity in a phase 1 first-in-human clinical trial. Together, these results support further clinical evaluation of AB002 as a potentially safe and effective new approach for treating or preventing acute thrombotic and thromboembolic conditions. This trial was registered at www.clinicaltrials.gov as #NCT03453060.


Asunto(s)
Fibrinolíticos/farmacología , Proteína C/efectos de los fármacos , Trombina/análogos & derivados , Trombosis/prevención & control , Adulto , Animales , Método Doble Ciego , Humanos , Persona de Mediana Edad , Papio , Proteínas Recombinantes/farmacología
9.
Sci Rep ; 9(1): 18035, 2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31792294

RESUMEN

Activity in trypsin-like proteases is the result of proteolytic cleavage at R15 followed by an ionic interaction that ensues between the new N terminus of I16 and the side chain of the highly conserved D194. This mechanism of activation, first proposed by Huber and Bode, organizes the oxyanion hole and primary specificity pocket for substrate binding and catalysis. Using the clotting protease thrombin as a relevant model, we unravel contributions of the I16-D194 ionic interaction to Na+ binding, stability of the transition state and the allosteric E*-E equilibrium of the trypsin fold. The I16T mutation abolishes the I16-D194 interaction and compromises the architecture of the oxyanion hole. The D194A mutation also abrogates the I16-D194 interaction but, surprisingly, has no effect on the architecture of the oxyanion hole that remains intact through a new H-bond established between G43 and G193. In both mutants, loss of the I16-D194 ionic interaction compromises Na+ binding, reduces stability of the transition state, collapses the 215-217 segment into the primary specific pocket and abrogates the allosteric E*-E equilibrium in favor of a rigid conformation that binds ligand at the active site according to a simple lock-and-key mechanism. These findings refine the structural role of the I16-D194 ionic interaction in the Huber-Bode mechanism of activation and reveal a functional linkage with the allosteric properties of the trypsin fold like Na+ binding and the E*-E equilibrium.


Asunto(s)
Ácido Aspártico/química , Isoleucina/química , Trombina/metabolismo , Regulación Alostérica/genética , Ácido Aspártico/genética , Cristalografía por Rayos X , Enlace de Hidrógeno , Iones , Isoleucina/genética , Cinética , Mutación , Naftoles , Unión Proteica , Pliegue de Proteína , Estructura Secundaria de Proteína/genética , Trombina/química , Trombina/genética , Trombina/ultraestructura , Triazinas
10.
Sci Rep ; 9(1): 12304, 2019 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-31444378

RESUMEN

A pre-existing, allosteric equilibrium between closed (E*) and open (E) conformations of the active site influences the level of activity in the trypsin fold and defines ligand binding according to the mechanism of conformational selection. Using the clotting protease thrombin as a model system, we investigate the molecular determinants of the E*-E equilibrium through rapid kinetics and X-ray structural biology. The equilibrium is controlled by three residues positioned around the active site. W215 on the 215-217 segment defining the west wall of the active site controls the rate of transition from E to E* through hydrophobic interaction with F227. E192 on the opposite 190-193 segment defining the east wall of the active site controls the rate of transition from E* to E through electrostatic repulsion of E217. The side chain of E217 acts as a lever that moves the entire 215-217 segment in the E*-E equilibrium. Removal of this side chain converts binding to the active site to a simple lock-and-key mechanism and freezes the conformation in a state intermediate between E* and E. These findings reveal a simple framework to understand the molecular basis of a key allosteric property of the trypsin fold.


Asunto(s)
Aminoácidos/metabolismo , Trombina/química , Trombina/metabolismo , Regulación Alostérica , Clorometilcetonas de Aminoácidos/metabolismo , Humanos , Cinética , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Unión Proteica , Conformación Proteica
11.
Sci Rep ; 9(1): 6125, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30992526

RESUMEN

Prothrombin, or coagulation factor II, is a multidomain zymogen precursor of thrombin that undergoes an allosteric equilibrium between two alternative conformations, open and closed, that react differently with the physiological activator prothrombinase. Specifically, the dominant closed form promotes cleavage at R320 and initiates activation along the meizothrombin pathway, whilst the open form promotes cleavage at R271 and initiates activation along the alternative prethrombin-2 pathway. Here we report how key structural features of prothrombin can be monitored by limited proteolysis with chymotrypsin that attacks W468 in the flexible autolysis loop of the protease domain in the open but not the closed form. Perturbation of prothrombin by selective removal of its constituent Gla domain, kringles and linkers reveals their long-range communication and supports a scenario where stabilization of the open form switches the pathway of activation from meizothrombin to prethrombin-2. We also identify R296 in the A chain of the protease domain as a critical link between the allosteric open-closed equilibrium and exposure of the sites of cleavage at R271 and R320. These findings reveal important new details on the molecular basis of prothrombin function.


Asunto(s)
Precursores Enzimáticos/metabolismo , Dominios Proteicos , Protrombina/metabolismo , Trombina/metabolismo , Regulación Alostérica , Quimotripsina/metabolismo , Cristalografía por Rayos X , Precursores Enzimáticos/química , Factor Xa/metabolismo , Estabilidad Proteica , Proteolisis , Protrombina/química , Relación Estructura-Actividad , Trombina/química
12.
Sci Rep ; 8(1): 4080, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29511224

RESUMEN

Trypsin-like proteases are synthesized as zymogens and activated through a mechanism that folds the active site for efficient binding and catalysis. Ligand binding to the active site is therefore a valuable source of information on the changes that accompany zymogen activation. Using the physiologically relevant transition of the clotting zymogen prothrombin to the mature protease thrombin, we show that the mechanism of ligand recognition follows selection within a pre-existing ensemble of conformations with the active site accessible (E) or inaccessible (E*) to binding. Prothrombin exists mainly in the E* conformational ensemble and conversion to thrombin produces two dominant changes: a progressive shift toward the E conformational ensemble triggered by removal of the auxiliary domains upon cleavage at R271 and a drastic drop of the rate of ligand dissociation from the active site triggered by cleavage at R320. Together, these effects produce a significant (700-fold) increase in binding affinity. Limited proteolysis reveals how the E*-E equilibrium shifts during prothrombin activation and influences exposure of the sites of cleavage at R271 and R320. These new findings on the molecular underpinnings of prothrombin activation are relevant to other zymogens with modular assembly involved in blood coagulation, complement and fibrinolysis.


Asunto(s)
Protrombina/química , Protrombina/metabolismo , Trombina/química , Trombina/metabolismo , Dominio Catalítico , Precursores Enzimáticos/química , Precursores Enzimáticos/metabolismo , Cinética , Unión Proteica , Conformación Proteica , Proteolisis
13.
Sci Rep ; 8(1): 2945, 2018 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-29440720

RESUMEN

The clotting factor prothrombin exists in equilibrium between closed and open conformations, but the physiological role of these forms remains unclear. As for other allosteric proteins, elucidation of the linkage between molecular transitions and function is facilitated by reagents stabilized in each of the alternative conformations. The open form of prothrombin has been characterized structurally, but little is known about the architecture of the closed form that predominates in solution under physiological conditions. Using X-ray crystallography and single-molecule FRET, we characterize a prothrombin construct locked in the closed conformation through an engineered disulfide bond. The construct: (i) provides structural validation of the intramolecular collapse of kringle-1 onto the protease domain reported recently; (ii) documents the critical role of the linker connecting kringle-1 to kringle-2 in stabilizing the closed form; and (iii) reveals novel mechanisms to shift the equilibrium toward the open conformation. Together with functional studies, our findings define the role of closed and open conformations in the conversion of prothrombin to thrombin and establish a molecular framework for prothrombin activation that rationalizes existing phenotypes associated with prothrombin mutations and points to new strategies for therapeutic intervention.


Asunto(s)
Modelos Moleculares , Protrombina/química , Protrombina/metabolismo , Secuencia de Aminoácidos , Activación Enzimática , Precursores Enzimáticos/química , Precursores Enzimáticos/metabolismo , Estabilidad de Enzimas , Humanos , Cinética , Mutación , Conformación Proteica , Ingeniería de Proteínas , Protrombina/genética , Relación Estructura-Actividad , Trombina/química , Trombina/metabolismo
14.
Biomol Concepts ; 9(1): 169-175, 2018 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-30864392

RESUMEN

Meizothrombin is an active intermediate generated during the proteolytic activation of prothrombin to thrombin in the penultimate step of the coagulation cascade. Structurally, meizothrombin differs from thrombin because it retains the auxiliary Gla domain and two kringles. Functionally, meizothrombin shares with thrombin the ability to cleave procoagulant (fibrinogen), prothrombotic (PAR1) and anticoagulant (protein C) substrates, although its specificity toward fibrinogen and PAR1 is less pronounced. In this study we report information on the structural architecture of meizothrombin resolved by SAXS and single molecule FRET as an elongated arrangement of its individual domains. In addition, we show the properties of a meizothrombin construct analogous to the anticoagulant thrombin mutant W215A/E217A currently in Phase I for the treatment of thrombotic complications and stroke. The findings reveal new structural and functional aspects of meizothrombin that advance our understanding of a key intermediate of the prothrombin activation pathway.


Asunto(s)
Anticoagulantes/química , Precursores Enzimáticos/química , Trombina/química , Sustitución de Aminoácidos , Animales , Anticoagulantes/farmacología , Línea Celular , Cricetinae , Cricetulus , Precursores Enzimáticos/farmacología , Fibrinógeno/metabolismo , Proteína C/metabolismo , Dominios Proteicos , Proteolisis/efectos de los fármacos , Trombina/farmacología
15.
Biochemistry ; 54(7): 1457-64, 2015 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-25664608

RESUMEN

Although Thr is equally represented as Ser in the human genome and as a nucleophile is as good as Ser, it is never found in the active site of the large family of trypsin-like proteases that utilize the Asp/His/Ser triad. The molecular basis of the preference of Ser over Thr in the trypsin fold was investigated with X-ray structures of the thrombin mutant S195T free and bound to an irreversible active site inhibitor. In the free form, the methyl group of T195 is oriented toward the incoming substrate in a conformation seemingly incompatible with productive binding. In the bound form, the side chain of T195 is reoriented for efficient substrate acylation without causing steric clash within the active site. Rapid kinetics prove that this change is due to selection of an active conformation from a preexisting ensemble of reactive and unreactive rotamers whose relative distribution determines the level of activity of the protease. Consistent with these observations, the S195T substitution is associated with a weak yet finite activity that allows identification of an unanticipated important role for S195 as the end point of allosteric transduction in the trypsin fold. The S195T mutation abrogates the Na(+)-dependent enhancement of catalytic activity in thrombin, activated protein C, and factor Xa and significantly weakens the physiologically important allosteric effects of thrombomodulin on thrombin and of cofactor Va on factor Xa. The evolutionary selection of Ser over Thr in trypsin-like proteases was therefore driven by the need for high catalytic activity and efficient allosteric regulation.


Asunto(s)
Sustitución de Aminoácidos , Serina/genética , Treonina/genética , Trombina/genética , Trombina/metabolismo , Tripsina/química , Regulación Alostérica , Clorometilcetonas de Aminoácidos/farmacología , Dominio Catalítico , Cristalografía por Rayos X , Células HEK293 , Humanos , Modelos Moleculares , Mutación Puntual , Conformación Proteica , Serina/química , Serina/metabolismo , Treonina/química , Treonina/metabolismo , Trombina/antagonistas & inhibidores , Trombina/química
16.
Proc Natl Acad Sci U S A ; 111(21): 7630-5, 2014 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-24821807

RESUMEN

The zymogen prothrombin is proteolytically converted by factor Xa to the active protease thrombin in a reaction that is accelerated >3,000-fold by cofactor Va. This physiologically important effect is paradigmatic of analogous cofactor-dependent reactions in the coagulation and complement cascades, but its structural determinants remain poorly understood. Prothrombin has three linkers connecting the N-terminal Gla domain to kringle-1 (Lnk1), the two kringles (Lnk2), and kringle-2 to the C-terminal protease domain (Lnk3). Recent developments indicate that the linkers, and particularly Lnk2, confer on the zymogen significant flexibility in solution and enable prothrombin to sample alternative conformations. The role of this flexibility in the context of prothrombin activation was tested with several deletions. Removal of Lnk2 in almost its entirety (ProTΔ146-167) drastically reduces the enhancement of thrombin generation by cofactor Va from >3,000-fold to 60-fold because of a significant increase in the rate of activation in the absence of cofactor. Deletion of Lnk2 mimics the action of cofactor Va and offers insights into how prothrombin is activated at the molecular level. The crystal structure of ProTΔ146-167 reveals a contorted architecture where the domains are not vertically stacked, kringle-1 comes within 9 Å of the protease domain, and the Gla-domain primed for membrane binding comes in contact with kringle-2. These findings broaden our molecular understanding of a key reaction of the blood coagulation cascade where cofactor Va enhances activation of prothrombin by factor Xa by compressing Lnk2 and morphing prothrombin into a conformation similar to the structure of ProTΔ146-167.


Asunto(s)
Factor Va/metabolismo , Factor Xa/metabolismo , Kringles/genética , Modelos Moleculares , Protrombina/metabolismo , Animales , Calcio/metabolismo , Línea Celular , Cromatografía de Afinidad , Cromatografía en Gel , Cromatografía por Intercambio Iónico , Clonación Molecular , Cricetinae , Cricetulus , Cristalografía por Rayos X , Electroforesis en Gel de Poliacrilamida , Humanos , Hidrólisis , Cinética , Espectrometría de Masas , Datos de Secuencia Molecular , Conformación Proteica , Protrombina/química , Análisis de Secuencia de Proteína
17.
J Biol Chem ; 288(16): 11601-10, 2013 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-23467412

RESUMEN

Trypsin-like proteases are synthesized as inactive zymogens and convert to the mature form upon activation by specific enzymes, often assisted by cofactors. Central to this paradigm is that the zymogen does not convert spontaneously to the mature enzyme, which in turn does not feed back to activate its zymogen form. In the blood, the zymogens prothrombin and prethrombin-2 require the prothrombinase complex to be converted to the mature protease thrombin, which is unable to activate prothrombin or prethrombin-2. Here, we show that replacement of key residues within the activation domain causes these zymogens to spontaneously convert to thrombin. The conversion is started by the zymogen itself, which is capable of binding ligands at the active site, and is abrogated by inactivation of the catalytic residue Ser-195. The product of autoactivation is functionally and structurally equivalent to wild-type thrombin. Zymogen autoactivation is explained by conformational selection, a basic property of the trypsin fold uncovered by structural and rapid kinetics studies. Both the zymogen and protease undergo a pre-existing equilibrium between active and inactive forms. The equilibrium regulates catalytic activity in the protease and has the potential to unleash activity in the zymogen to produce autoactivation. A new strategy emerges for the facile production of enzymes through zymogen autoactivation that is broadly applicable to trypsin-like proteases of biotechnological and clinical interest.


Asunto(s)
Sustitución de Aminoácidos , Mutación Missense , Protrombina/química , Protrombina/genética , Protrombina/metabolismo , Activación Enzimática , Humanos , Tromboplastina/genética , Tromboplastina/metabolismo
18.
Biochemistry ; 50(47): 10195-202, 2011 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-22049947

RESUMEN

Prethrombin-2 is the immediate zymogen precursor of the clotting enzyme thrombin, which is generated upon cleavage at R15 and separation of the A chain and catalytic B chain. The X-ray structure of prethrombin-2 determined in the free form at 1.9 Å resolution shows the 215-217 segment collapsed into the active site and occluding 49% of the volume available for substrate binding. Remarkably, some of the crystals harvested from the same crystallization well, under identical solution conditions, diffract to 2.2 Å resolution in the same space group but produce a structure in which the 215-217 segment moves >5 Å and occludes 24% of the volume available for substrate binding. The two alternative conformations of prethrombin-2 have the side chain of W215 relocating >9 Å within the active site and are relevant to the allosteric E*-E equilibrium of the mature enzyme. Another unanticipated feature of prethrombin-2 bears on the mechanism of prothrombin activation. R15 is found buried within the protein in ionic interactions with E14e, D14l, and E18, thereby making its exposure to solvent necessary for proteolytic attack and conversion to thrombin. On the basis of this structural observation, we constructed the E14eA/D14lA/E18A triple mutant to reduce the level of electrostatic coupling with R15 and promote zymogen activation. The mutation causes prethrombin-2 to spontaneously convert to thrombin, without the need for the snake venom ecarin or the physiological prothrombinase complex.


Asunto(s)
Protrombina/química , Protrombina/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Activación Enzimática , Humanos , Cinética , Conformación Molecular , Datos de Secuencia Molecular , Conformación Proteica , Protrombina/genética
19.
Biochemistry ; 50(29): 6301-7, 2011 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-21707111

RESUMEN

Protein allostery is based on the existence of multiple conformations in equilibrium linked to distinct functional properties. Although evidence of allosteric transitions is relatively easy to identify by functional studies, structural detection of a pre-existing equilibrium between alternative conformations remains challenging even for textbook examples of allosteric proteins. Kinetic studies show that the trypsin-like protease thrombin exists in equilibrium between two conformations where the active site is either collapsed (E*) or accessible to substrate (E). However, structural demonstration that the two conformations exist in the same enzyme construct free of ligands has remained elusive. Here we report the crystal structure of the thrombin mutant N143P in the E form, which complements the recently reported structure in the E* form, and both the E and E* forms of the thrombin mutant Y225P. The side chain of W215 moves 10.9 Å between the two forms, causing a displacement of 6.6 Å of the entire 215-217 segment into the active site that in turn opens or closes access to the primary specificity pocket. Rapid kinetic measurements of p-aminobenzamidine binding to the active site confirm the existence of the E*-E equilibrium in solution for wild-type and the mutants N143P and Y225P. These findings provide unequivocal proof of the allosteric nature of thrombin and lend strong support to the recent proposal that the E*-E equilibrium is a key property of the trypsin fold.


Asunto(s)
Serina Endopeptidasas/química , Serina Endopeptidasas/metabolismo , Trombina/química , Trombina/metabolismo , Regulación Alostérica , Benzamidinas/metabolismo , Cristalografía por Rayos X , Cinética , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Estructura Secundaria de Proteína
20.
Stroke ; 42(6): 1736-41, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21512172

RESUMEN

BACKGROUND AND PURPOSE: Treatment of ischemic stroke by activation of endogenous plasminogen using tissue plasminogen activator is limited by bleeding side effects. In mice, treatment of experimental ischemic stroke with activated protein C improves outcomes; however, activated protein C also has bleeding side effects. In contrast, activation of endogenous protein C using thrombin mutant W215A/E217A (WE) is antithrombotic without hemostasis impairment in primates. Therefore, we investigated the outcome of WE-treated experimental ischemic stroke in mice. METHODS: The middle cerebral artery was occluded with a filament for 60 minutes to induce ischemic stroke. Vehicle, recombinant WE, or tissue plasminogen activator was administered during middle cerebral artery occlusion or 2 hours after middle cerebral artery occlusion. Neurological performance was scored daily. Intracranial bleeding and cerebral infarct size, defined by 2,3,5-triphenyltetrazolium chloride exclusion, were determined on autopsy. Hemostasis was evaluated using tail bleeding tests. RESULTS: WE improved neurological performance scores, increased laser Doppler flowmetry-monitored post-middle cerebral artery occlusion reperfusion of the parietal cortex, and reduced 2,3,5-triphenyltetrazolium chloride-defined cerebral infarct size versus vehicle controls. However, unlike tissue plasminogen activator, WE did not increase tail bleeding or intracranial hemorrhage. CONCLUSIONS: WE treatment is neuroprotective without hemostasis impairment in experimental acute ischemic stroke in mice and thus may provide an alternative to tissue plasminogen activator for stroke treatment.


Asunto(s)
Anticoagulantes/uso terapéutico , Isquemia Encefálica , Infarto Cerebral/tratamiento farmacológico , Infarto Cerebral/patología , Accidente Cerebrovascular , Trombina/genética , Trombina/uso terapéutico , Animales , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/patología , Infarto Cerebral/fisiopatología , Modelos Animales de Enfermedad , Hemostasis , Humanos , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Flujometría por Láser-Doppler , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/patología , Activador de Tejido Plasminógeno/uso terapéutico , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...