Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
1.
Optom Vis Sci ; 101(8): 514-522, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39163120

RESUMEN

SIGNIFICANCE: People with peripheral field loss report colliding with other pedestrians on their blind side(s). We show that, in dyadic collision scenarios between persons, one with field loss, such as homonymous hemianopia, and the other normally sighted pedestrian, collisions occur only if the persons with homonymous hemianopia are overtaking the pedestrians, and the collision risk is concentrated at farther bearing angles than previously suggested. PURPOSE: Prior work computed the risk of collision while simulating both pedestrians as points and did not consider the ability of the other pedestrian's normal vision to avoid the collision. We extended the model to better characterize the open space collision risk posed for persons with homonymous hemianopia by normally sighted pedestrians where both have volume. METHODS: We computed the risk of collision with approaching pedestrians using a model that simulates approaching pedestrians as volumetric entities without vision, volumetric entities with vision, and as points for comparison with the prior work. Collision risk of approaching pedestrians is characterized for all three conditions through spatial collision risk maps and collision risk densities as a function of bearing and radial distances. RESULTS: The collision risk for volumetric pedestrians is slightly different from that of point pedestrians. For volumetric pedestrians simulated with normal vision, the risk of collision was reduced substantially, as the other pedestrians could detect and avoid most impending collisions. The remaining collision risk is from pedestrians approaching at higher bearing angles (>50°) and from shorter radial distances (<2 m). Thus, collisions occurred when the pedestrians started in front of the person with homonymous hemianopia that was overtaking the pedestrian. CONCLUSIONS: The probability of collisions between pedestrians and the person with peripheral field loss is low and occurs only when the person with peripheral field loss is walking from behind the pedestrian at faster speed, thereby overtaking them. Such collisions occur with pedestrians at higher bearing angles, which should be monitored by assistive aids to avoid collisions. The same collision risk applies not only in homonymous hemianopia but also in other peripheral field loss such as monocular vision loss or concentric field loss, as common in retinitis pigmentosa and glaucoma.


Asunto(s)
Accidentes de Tránsito , Hemianopsia , Peatones , Campos Visuales , Humanos , Campos Visuales/fisiología , Hemianopsia/fisiopatología , Hemianopsia/etiología , Simulación por Computador , Caminata/fisiología , Medición de Riesgo/métodos , Factores de Riesgo
2.
Optom Vis Sci ; 101(6): 408-416, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38990239

RESUMEN

SIGNIFICANCE: Performance-based outcome measures are crucial for clinical trials of field expansion devices. We implemented a test simulating a real-world mobility situation, focusing on detection of a colliding pedestrian among multiple noncolliding pedestrians, suitable for measuring the effects of homonymous hemianopia and assistive devices in clinical trials. PURPOSE: In preparation for deploying the test in a multisite clinical trial, we conducted a pilot study to gather preliminary data on blind-side collision detection performance with multiperiscopic peripheral prisms compared with Fresnel peripheral prisms. We tested the hypothesis that detection rates for colliding pedestrians approaching on a 40° bearing angle (close to the highest collision risk when walking) would be higher with 100Δ oblique multiperiscopic (≈42° expansion) than 65Δ oblique Fresnel peripheral prisms (≈32° expansion). METHODS: Six participants with homonymous hemianopia completed the test with and without each type of prism glasses, after using them in daily mobility for a minimum of 4 weeks. The test, presented as a video on a large screen, simulated walking through a busy shopping mall. Colliding pedestrians approached from the left or the right on a bearing angle of 20 or 40°. RESULTS: Overall, blind-side detection was only 23% without prisms but improved to 73% with prisms. For multiperiscopic prisms, blind-side detection was significantly higher with than without prisms at 40° (88 vs. 0%) and 20° (75 vs. 0%). For Fresnel peripheral prisms, blind-side detection rates were not significantly higher with than without prisms at 40° (38 vs. 0%) but were significantly higher with prisms at 20° (94 vs. 56%). At 40°, detection rates were significantly higher with multiperiscopic than Fresnel prisms (88 vs. 38%). CONCLUSIONS: The collision detection test is suitable for evaluating the effects of hemianopia and prism glasses on collision detection, confirming its readiness to serve as the primary outcome measure in the upcoming clinical trial.


Asunto(s)
Hemianopsia , Peatones , Humanos , Proyectos Piloto , Hemianopsia/diagnóstico , Hemianopsia/fisiopatología , Hemianopsia/etiología , Masculino , Femenino , Persona de Mediana Edad , Adulto , Accidentes de Tránsito , Anteojos , Campos Visuales/fisiología , Anciano , Caminata/fisiología
3.
Invest Ophthalmol Vis Sci ; 65(8): 46, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39078731

RESUMEN

Purpose: The purpose of this study was to investigate gaze-scanning by pedestrians with homonymous hemianopia (HH) when walking on mid-block sidewalks. Methods: Pedestrians with right homonymous hemianopia (RHH), and left homonymous hemianopia (LHH) without and with left spatial neglect (LHSN) walked on city streets wearing a gaze-tracking system. Gaze points were obtained by combining head movement and eye-in-head movement. Mixed-effects regression models were used to compare horizontal gaze scan magnitudes and rates between the side of the hemi-field loss (BlindSide) and the seeing side (SeeingSide), among the three subject groups, and between mid-block walking and street crossing segments. Results: A total of 7021 gaze scans were obtained from 341 minutes of mid-block walking videos by 19 participants (6 with LHH, 7 with RHH, and 6 with LHSN). The average gaze magnitude and scanning rate in mid-block segments were significantly higher towards the BlindSide than the SeeingSide in LHH (magnitude larger by 1.9° (degrees), P = 0.006; scan rate higher by 4.2 scans/minute, P < 0.001) and RHH subjects (magnitude larger by 3.3°, P < 0.001; scan rate higher by 3.2 scans/minute, P = 0.002), but they were not significantly different in LHSN subjects. The scanning rate, in terms of scans/minute (mean, 95% confidence interval [CI]) was significantly lower in LHSN subjects (mean = 6.9, 95% CI = 5.6-8.7) than LHH (mean = 10.2, 95% CI = 8.0-13.1; P = 0.03) and RHH (mean = 11.1, 95% CI = 9.0-13.7; P = 0.007) subjects. Compared to street-crossings, the scan rate during the mid-block segments was lower by 3.5 scans/minute (P < 0.001) and the gaze magnitude was smaller by 3.8° (P < 0.001) over the 3 groups. Conclusions: Evidence of compensatory scanning suggests a proactive, top-down mechanism driving gaze in HH. The presence of spatial neglect (SN) appeared to negatively impact the top-down process.


Asunto(s)
Fijación Ocular , Hemianopsia , Peatones , Trastornos de la Percepción , Campos Visuales , Humanos , Hemianopsia/fisiopatología , Hemianopsia/diagnóstico , Masculino , Femenino , Anciano , Persona de Mediana Edad , Trastornos de la Percepción/fisiopatología , Trastornos de la Percepción/etiología , Campos Visuales/fisiología , Fijación Ocular/fisiología , Caminata/fisiología , Movimientos de la Cabeza/fisiología , Movimientos Oculares/fisiología , Adulto , Anciano de 80 o más Años , Tecnología de Seguimiento Ocular
4.
J Vis ; 24(6): 13, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38899959

RESUMEN

Binocular double vision in strabismus is marked by diplopia (seeing the same object in two different directions) and visual confusion (seeing two different objects in the same direction). In strabismus with full visual field, the diplopia coexists with visual confusion across most of the binocular field. With visual field loss, or with use of partial prism segments for field expansion, the two phenomena may be separable. This separability is the focus of this review and offers new insights into binocular function. We show that confusion is necessary but is not sufficient for field expansion. Diplopia plays no role in field expansion but is necessary for clinical testing of strabismus, making such testing difficult in field loss conditions with confusion without diplopia. The roles of the three-dimensional structure of the real world and the dynamic of eye movements within that structure are considered as well. Suppression of one eye's partial view under binocular vision that develops in early-onset (childhood) strabismus is assumed to be a sensory adaption to diplopia. This assumption can be tested using the separation of diplopia and confusion.


Asunto(s)
Diplopía , Estrabismo , Visión Binocular , Campos Visuales , Humanos , Visión Binocular/fisiología , Campos Visuales/fisiología , Diplopía/fisiopatología , Estrabismo/fisiopatología , Movimientos Oculares/fisiología
5.
IS&T Int Symp Electron Imaging ; 36: 2141-2148, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38390289

RESUMEN

Avoiding person-to-person collisions is critical for visual field loss patients. Any intervention claiming to improve the safety of such patients should empirically demonstrate its efficacy. To design a VR mobility testing platform presenting multiple pedestrians, a distinction between colliding and non-colliding pedestrians must be clearly defined. We measured nine normally sighted subjects' collision envelopes (CE; an egocentric boundary distinguishing collision and non-collision) and found it changes based on the approaching pedestrian's bearing angle and speed. For person-to-person collision events for the VR mobility testing platform, non-colliding pedestrians should not evade the CE.

6.
Invest Ophthalmol Vis Sci ; 64(14): 26, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37975848

RESUMEN

Purpose: To investigate compensatory gaze-scanning behaviors during street crossings by pedestrians with homonymous hemianopia (HH) and hemispatial neglect (HSN). Methods: Pedestrians with right homonymous hemianopia (RHH) and left homonymous hemianopia without (LHH) and with left spatial-neglect (LHSN) walked on city streets wearing a gaze-tracking system that also captured scene videos. Street-crossing instances were manually annotated, and horizontal gaze scan of magnitude ≥20° and scanning rates were compared within-subject, between the side of the hemifield loss (BlindSide) and the other side (SeeingSide). Proportion of instances with scans to both the left and the right side at nonsignalized crossings (indicative of safe scanning behavior) were compared among the three subject groups. Results: Data from 19 participants (6 LHH, 7 RHH, and 6 with mild [4] or moderate [2] LHSN), consisting of 521 street-crossing instances of a total duration of 201 minutes and 5375 gaze scans, were analyzed. The overall gaze magnitude (mean [95% confidence interval (CI)]) was significantly larger toward the BlindSide (40.4° [39.1°-41.9°]) than the SeeingSide (36° [34.8°-37.3°]; P < 0.001). The scanning rate (mean [95% CI] scans/min) toward the BlindSide (14 [12.5-15.6]) was significantly higher than the SeeingSide (11.5 [10.3°-12.9°]; P < 0.001). The scanning rate in the LHSN group (10.7 [8.9-12.8]) was significantly lower than the LHH group (14 [11.6-17.0]; P = 0.045). The proportion of nonsignalized crossings with scans to both sides was significantly lower in LHSN (58%; P = 0.039) and RHH (51%; P = 0.003) than LHH (75%) participants. Conclusions: All groups demonstrated compensatory scanning, making more gaze scans with larger magnitudes to the blind side. Mild to moderate LHSN adversely impacted the scanning rate.


Asunto(s)
Peatones , Trastornos de la Percepción , Humanos , Hemianopsia/diagnóstico , Campos Visuales
7.
Optom Vis Sci ; 100(8): 515-529, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37499041

RESUMEN

SIGNIFICANCE: Veridical depictions of scene appearance with scotomas allow better understanding of the impact of field loss and may improve the development and implementation of rehabilitation. Explanation and depiction of the invisibility of scotoma may lead to patients' understanding and thus better compliance with related treatments. PURPOSE: Simulations of perception with scotomas guide training, patient education, and rehabilitation research. Most simulations incorrectly depict scotomas as black patches, although the scotomas and the missing contents are usually invisible to patients. We present a novel approach to capture the reported appearance of scenes with scotomas. METHODS: We applied a content-aware image resizing algorithm to carve out the content elided under the scotomas. With video sequences, we show how and why eye movements fail to increase the visibility of the carved scotomas. RESULTS: Numerous effects, reported by patients, emerge naturally from the scotoma carving. Carving-eliminated scotomas over natural images are barely visible, despite causing substantial distortions. Low resolution and contrast sensitivity at farther eccentricities and saccadic blur reduce the visibility of the distortions. In a walking scenario, static objects moving smoothly to the periphery disappear into and then reemerge out of peripheral scotomas, invisibly. CONCLUSIONS: Scotoma carving provides a viable hypothetical simulation of vision with scotomas due to loss of neurons at the retinal ganglion cell level and higher. As a hypothesis, it generates predictions that lend themselves to future clinical testing. The different effects of scotomas due to loss of photoreceptors are left for follow-up work.


Asunto(s)
Escotoma , Campos Visuales , Humanos , Escotoma/diagnóstico , Escotoma/etiología , Movimientos Oculares , Movimientos Sacádicos , Sensibilidad de Contraste
8.
Biomed Opt Express ; 14(5): 2352-2364, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37206143

RESUMEN

Oblique Fresnel peripheral prisms have been used for field expansion in homonymous hemianopia mobility such as walking and driving. However, limited field expansion, low image quality, and small eye scanning range limit their effectiveness. We developed a new oblique multi-periscopic prism using a cascade of rotated half-penta prisms, which provides 42° horizontal field expansion along with 18° vertical shift, high image quality, and wider eye scanning range. Feasibility and performance of a prototype using 3D-printed module are demonstrated by raytracing, photographic depiction, and Goldmann perimetry with patients with homonymous hemianopia.

9.
Artículo en Inglés | MEDLINE | ID: mdl-36970501

RESUMEN

Detecting and avoiding collisions during walking is critical for safe mobility. To determine the effectiveness of clinical interventions, a realistic objective outcome measure is needed. A real-world obstacle course with moving hazards has numerous limitations (e.g., safety concerns of physical collision, inability to control events, maintaining event consistency, and event randomization). Virtual reality (VR) platforms may overcome such limitations. We developed a VR walking collision detection test using a standalone head-mounted display (HMD, Meta Quest 2) with the Unity 3D engine to enable subjects' physical walking within a VR environment (i.e., a busy shopping mall). The performance measures focus on the detection and avoidance of potential collisions, where a pedestrian may (or may not) walks toward a collision with the subject, while various non-colliding pedestrians are presented simultaneously. The physical space required for the system was minimized. During the development, we addressed expected and unexpected hurdles, such as mismatch of visual perception of VR space, limited field of view (FOV) afforded by the HMD, design of pedestrian paths, design of the subject task, handling of subject's response (detection or avoidance behavior), use of mixed reality (MR) for walking path calibration. We report the initial implementation of the HMD VR walking collision detection and avoidance scenarios that showed promising potential as clinical outcome measures.

10.
Transl Vis Sci Technol ; 12(3): 18, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36939712

RESUMEN

Purpose: To propose new methods for eye selection in presbyopic monovision corrections. Methods: Twenty subjects with presbyopia performed two standard methods of binary eye dominance identification (sensory with +1.50 diopters [D ]and +0.50 D and sighting with "hole-in-the-card") and two psychophysical methods of perceived visual quality: (1) the Preferential test, 26 natural images were judged with the near addition in one eye or in the other in a 2-interval forced-choice task, and the Eye Dominance Strength (EDS) defined as the proportion of trials where one monovision is preferred over the other; (2) the Multifocal Acceptance Score (MAS-2EV) test, the perceived quality of a natural images set (for 2 luminance levels and distances) was scored and EDS defined as the score difference between monovision in one eye or the other. Left-eye and right-eye dominance are indicated with negative and positive values, respectively. Tests were performed using a Simultaneous Vision Simulator, which allows rapid changes between corrections. Results: Standard sensory and sighting dominances matched in only 55% of subjects. The Preferential EDS (ranging from -0.7 to +0.9) and MAS-2EV EDS (ranging from -0.6 to +0.4) were highly correlated. Selecting the eye for far in monovision with the MAS-2EV, sensory, or sighting tests would have resulted in 79%, 64%, and 43% success considering the Preferential test as the gold standard. Conclusions: Tests based on perceptual preference allow selection of the preferred monovision correction and measurement of dominance strength. Translational Relevance: The binocular visual simulator allows efficient implementation of eye preference tests for monovision in clinical use.


Asunto(s)
Predominio Ocular , Visión Monocular , Humanos , Agudeza Visual , Visión Ocular , Pruebas de Visión
11.
Behav Res Methods ; 55(6): 2787-2799, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-35953662

RESUMEN

Tracking head movement in outdoor activities is more challenging than in controlled indoor lab environments. Large-magnitude head scanning is common under natural conditions. Compensatory gaze (head and eye) scanning while walking may be critical for people with visual field loss. We compared the accuracy of two outdoor head tracking methods: differential inertial measurement units (IMU) and simultaneous localization and mapping (SLAM). At a fixed location experiment, a gaze aiming test showed that SLAM outperforms IMU in terms of error (IMU: 9.6°, SLAM: 4.47°). In an urban street walking experiment conducted with five patients with hemifield loss, the IMU drift, quantified by root-mean-square deviation, was as high as 68.1°, while the drift of SLAM was only 5.3°. However, the SLAM method suffered from data loss due to tracking failure (~10% overall, and ~ 18% when crossing streets). Our results show that the SLAM and IMU methods have complementary properties. Because of no data gaps, the differential IMU method may be desirable as compared to SLAM in settings where the signal drift can be removed in post-processing and small gaze estimation errors can be tolerated.


Asunto(s)
Movimientos de la Cabeza , Caminata , Humanos
12.
ACM Trans Access Comput ; 15(3)2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36148267

RESUMEN

Blind people face difficulties with independent mobility, impacting employment prospects, social inclusion, and quality of life. Given the advancements in computer vision, with more efficient and effective automated information extraction from visual scenes, it is important to determine what information is worth conveying to blind travelers, especially since people have a limited capacity to receive and process sensory information. We aimed to investigate which objects in a street scene are useful to describe and how those objects should be described. Thirteen cane-using participants, five of whom were early blind, took part in two urban walking experiments. In the first experiment, participants were asked to voice their information needs in the form of questions to the experimenter. In the second experiment, participants were asked to score scene descriptions and navigation instructions, provided by the experimenter, in terms of their usefulness. The descriptions included a variety of objects with various annotations per object. Additionally, we asked participants to rank order the objects and the different descriptions per object in terms of priority and explain why the provided information is or is not useful to them. The results reveal differences between early and late blind participants. Late blind participants requested information more frequently and prioritized information about objects' locations. Our results illustrate how different factors, such as the level of detail, relative position, and what type of information is provided when describing an object, affected the usefulness of scene descriptions. Participants explained how they (indirectly) used information, but they were frequently unable to explain their ratings. The results distinguish between various types of travel information, underscore the importance of featuring these types at multiple levels of abstraction, and highlight gaps in current understanding of travel information needs. Elucidating the information needs of blind travelers is critical for the development of more useful assistive technologies.

13.
Optom Vis Sci ; 99(12): 875-884, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36594755

RESUMEN

SIGNIFICANCE: Peripheral prisms (p-prisms) improve blind-side detection of hazards in hemianopia by shifting the image of the hazard into the intact visual field. Collision judgments can be made accurately after detection by using a gaze shift to fixate the hazard in the prism-free portion of the lens, but this is slow relative to normal peripheral vision. A prior study found that prism adaptation for visual direction did not occur with general wear. We developed a perceptual-motor training regimen that resulted in accurate pointing at p-prism targets after six 1-hour sessions. PURPOSE: This study aimed to determine if improvements in pointing accuracy from perceptual-motor training generalized to collision judgments during simulated walking. METHODS: Participants with hemianopia (n = 13) made collision judgments in virtual reality for a person appearing 0.4 to 13.5° from the walking path. Judgments were measured under fixed gaze, requiring collision judgments via the p-prism image only, and free gaze, representing a more natural scenario. Measurements were made without and with p-prisms immediately after fitting, after a 2-week acclimation, after training, and 3 months later. Controls (n = 13) did one visit without p-prisms. RESULTS: Controls had 100% detection and symmetrically distributed collision judgments for the central 33 and 36% of hazards under fixed gaze and free gaze, respectively. In hemianopia, the seeing side was not different from controls. Blind-side detection was reduced without p-prisms to 40% fixed gaze and 82% free gaze and improved with p-prisms to 99% fixed gaze and 97% free gaze (P < .001). When first worn, fixed-gaze prism side collisions were 63 versus 37% on the seeing side and 41 versus 39% for free gaze (P < .001). There was a small improvement for fixed gaze after the 2-week acclimation (53%, P < .001), but no improvements from training or an additional 3 months of use. CONCLUSIONS: P-prisms improved detection, but collision judgments were inaccurate when seen only via the p-prisms and did not improve with perceptual-motor training. Patients should continue to be advised to turn their head and eyes to fixate the hazard after detection.


Asunto(s)
Hemianopsia , Juicio , Humanos , Anteojos , Visión Ocular , Campos Visuales
14.
Disabil Rehabil Assist Technol ; 17(8): 888-896, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-32997554

RESUMEN

PURPOSE: Visual sensory substitution devices (SSDs) convey visual information to a blind person through another sensory modality. Using a visual SSD in various daily activities requires training prior to use the device independently. Yet, there is limited literature about procedures and outcomes of the training conducted for preparing users for practical use of SSDs in daily activities. METHODS: We trained 29 blind adults (9 with congenital and 20 with acquired blindness) in the use of a commercially available electro-tactile SSD, BrainPort. We describe a structured training protocol adapted from the previous studies, responses of participants, and we present retrospective qualitative data on the progress of participants during the training. RESULTS: The length of the training was not a critical factor in reaching an advanced stage. Though performance in the first two sessions seems to be a good indicator of participants' ability to progress in the training protocol, there are large individual differences in how far and how fast each participant can progress in the training protocol. There are differences between congenital blind users and those blinded later in life. CONCLUSIONS: The information on the training progression would be of interest to researchers preparing studies, and to eye care professionals, who may advise patients to use SSDs.IMPLICATIONS FOR REHABILITATIONThere are large individual differences in how far and how fast each participant can learn to use a visual-to-tactile sensory substitution device for a variety of tasks.Recognition is mainly achieved through top-down processing with prior knowledge about the possible responses. Therefore, the generalizability is still questionable.Users develop different strategies in order to succeed in training tasks.


Asunto(s)
Personas con Daño Visual , Adulto , Ceguera , Humanos , Estudios Retrospectivos , Lengua , Tacto
15.
Optom Vis Sci ; 98(10): 1210-1226, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34629434

RESUMEN

SIGNIFICANCE: Photographic depiction helps to illustrate the primary and secondary field of view effects of low vision devices along with their utility to clinicians, patients, and caretakers. This technique may also be helpful for designers and researchers in improving the design and fitting of low vision devices. PURPOSE: The field of view through spectacles-mounted low vision devices has typically been evaluated using perimetry. However, the perimetric field diagram is different from the retinal image and often fails to represent the important aspects of the field of view and visual parameters. We developed a photographic depiction method to record and veridically show the field of view effects of these devices. METHODS: We used a 3D-printed holder to place spectacles-mounted devices at the same distance from the empirically determined reference point of the field of view in a camera lens (f = 16 mm) as they would be from an eye, when in use. The field of view effects of a bioptic telescope, a minifier (reverse telescope), and peripheral prisms were captured using a conventional camera, representing retinal images. The human eye pupil size (adjusting the F number: f/2.8 to f/8 and f/22 in the camera lens) and fitting parameters (pantoscopic tilt and back vertex distance) varied. RESULTS: Real-world indoor and outdoor walking and driving scenarios were depicted as retinal images illustrating the field of view through low vision devices, distinguishing optical and obscuration scotomas, and demonstrating secondary effects (spatial distortions, viewpoint changes, diplopia, spurious reflection, and multiplexing effects) not illustrated by perimetric field diagrams. CONCLUSIONS: Photographic depiction illustrates the primary and secondary field of view effects of the low vision devices. These images highlight the benefit and possible trade-offs of the low vision devices and may be beneficial in education and training.


Asunto(s)
Anteojos , Baja Visión , Humanos , Trastornos de la Visión , Visión Ocular , Pruebas del Campo Visual
16.
J Neural Eng ; 18(4)2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34359062

RESUMEN

Objective. The perception of individuals fitted with retinal prostheses is not fully understood, although several retinal implants have been tested and commercialized. Realistic simulations of perception with retinal implants would be useful for future development and evaluation of such systems.Approach.We implemented a retinal prosthetic vision simulation, including temporal features, which have not been previously simulated. In particular, the simulation included temporal aspects such as persistence and perceptual fading of phosphenes and the electrode activation rate.Main results.The simulated phosphene persistence showed an effective reduction in flickering at low electrode activation rates. Although persistence has a positive effect on static scenes, it smears dynamic scenes. Perceptual fading following continuous stimulation affects prosthetic vision of both static and dynamic scenes by making them disappear completely or partially. However, we showed that perceptual fading of a static stimulus might be countered by head-scanning motions, which together with the persistence revealed the contours of the faded object. We also showed that changing the image polarity may improve simulated prosthetic vision in the presence of persistence and perceptual fading.Significance.Temporal aspects have important roles in prosthetic vision, as illustrated by the simulations. Considering these aspects may improve the future design, the training with, and evaluation of retinal prostheses.


Asunto(s)
Fosfenos , Prótesis Visuales , Simulación por Computador , Humanos , Retina , Trastornos de la Visión
17.
Sci Rep ; 11(1): 352, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33432060

RESUMEN

Due to chromatic aberration, blue images are defocused when the eye is focused to the middle of the visible spectrum, yet we normally are not aware of chromatic blur. The eye suffers from monochromatic aberrations which degrade the optical quality of all images projected on the retina. The combination of monochromatic and chromatic aberrations is not additive and these aberrations may interact to improve image quality. Using Adaptive Optics, we investigated the optical and visual effects of correcting monochromatic aberrations when viewing polychromatic grayscale, green, and blue images. Correcting the eye's monochromatic aberrations improved optical quality of the focused green images and degraded the optical quality of defocused blue images, particularly in eyes with higher amounts of monochromatic aberrations. Perceptual judgments of image quality tracked the optical findings, but the perceptual impact of the monochromatic aberrations correction was smaller than the optical predictions. The visual system appears to be adapted to the blur produced by the native monochromatic aberrations, and possibly to defocus in blue.


Asunto(s)
Percepción de Color , Retina/fisiología , Visión Ocular/fisiología , Humanos , Fenómenos Ópticos
18.
Optom Vis Sci ; 97(10): 833-846, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33055514

RESUMEN

On the occasion of being awarded the Prentice Medal, I was asked to summarize my translational journey. Here I describe the process of becoming a low-vision rehabilitation clinician and researcher, frustrated by the unavailability of effective treatments for some conditions. This led to decades of working to understand patients' needs and the complexities and subtleties of their visual systems and conditions. It was followed by many iterations of developing vision aids and the techniques needed to objectively evaluate their benefit. I specifically address one path: the invention and development of peripheral prisms to expand the visual fields of patients with homonymous hemianopia, leading to our latest multiperiscopic prism (mirror-based design) with its clear 45° field-of-view image shift.


Asunto(s)
Anteojos , Hemianopsia/terapia , Baja Visión/terapia , Campos Visuales/fisiología , Distinciones y Premios , Hemianopsia/fisiopatología , Humanos , Resultado del Tratamiento , Baja Visión/fisiopatología
19.
Biomed Opt Express ; 11(9): 4872-4889, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-33014587

RESUMEN

Patients with visual field loss frequently collide with other pedestrians, with the highest risk being from pedestrians at a bearing angle of 45°. Current prismatic field expansion devices (≈30°) cannot cover pedestrians posing the highest risk and are limited by poor image quality and restricted eye scanning range (<5°). A new field expansion device: multi-periscopic prism (MPP); comprising a cascade of half-penta prisms provides wider shifting power (45°) with dramatically better image quality and wider eye scanning range (15°) is presented. Spectacles-mounted MPPs were implemented using 3D printing. The efficacy of the MPP is demonstrated using perimetry, photographic depiction, and analyses of the collision risk covered by the devices.

20.
Transl Vis Sci Technol ; 9(9): 6, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32884857

RESUMEN

Purpose: Using a geometrically derived model and a virtual curb simulator, we quantify the degree to which a wearable device that projects a laser line onto tripping hazards in a pedestrian's path improves visual recognition for people with visual impairments (VI). We confirm this with subjects' performance on computer simulations of low contrast curbs. Methods: We derive geometric expressions quantifying the visual cue users perceive when a single laser line is projected from their hip onto a curb. We show how the efficacy of this cue changes with the angle of the laser line relative to the subject's walking trajectory. We confirm this result with data from three subjects with VI in a simulated curb recognition task in which subjects classified computer images as an "Ascending," "Flat," or "Descending" curb. Results: The derived model predicts that human recognition performance depends strongly on the laser line angle and the subject data confirms this (r2 = 0.86,P < 0.001). The laser line cue improved subject accuracy from a chance level of 33% to 95% for a simulated, one-inch, low-contrast curb at a distance of five feet. Conclusions: Recognition of curbs in low light can be improved by augmenting the scene with a single laser line projected from a user's hip, if the angle of laser line is appropriately selected. Translational Relevance: A majority of people with VI rely on their impaired residual vision for mobility, rather than a mobility aid, resulting in increased injury for this population. Enhancing residual vision could promote safety, increase independence, and reduce medical costs.


Asunto(s)
Caminata , Dispositivos Electrónicos Vestibles , Simulación por Computador , Humanos , Luz , Trastornos de la Visión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...