Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38731890

RESUMEN

Surpassing the diffraction barrier revolutionized modern fluorescence microscopy. However, intrinsic limitations in statistical sampling, the number of simultaneously analyzable channels, hardware requirements, and sample preparation procedures still represent an obstacle to its widespread diffusion in applicative biomedical research. Here, we present a novel pipeline based on automated multimodal microscopy and super-resolution techniques employing easily available materials and instruments and completed with open-source image-analysis software developed in our laboratory. The results show the potential impact of single-molecule localization microscopy (SMLM) on the study of biomolecules' interactions and the localization of macromolecular complexes. As a demonstrative application, we explored the basis of p53-53BP1 interactions, showing the formation of a putative macromolecular complex between the two proteins and the basal transcription machinery in situ, thus providing visual proof of the direct role of 53BP1 in sustaining p53 transactivation function. Moreover, high-content SMLM provided evidence of the presence of a 53BP1 complex on the cell cytoskeleton and in the mitochondrial space, thus suggesting the existence of novel alternative 53BP1 functions to support p53 activity.


Asunto(s)
Proteína p53 Supresora de Tumor , Proteína 1 de Unión al Supresor Tumoral P53 , Proteína p53 Supresora de Tumor/metabolismo , Humanos , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Imagen Individual de Molécula/métodos , Microscopía Fluorescente/métodos , Unión Proteica , Línea Celular Tumoral , Mitocondrias/metabolismo
2.
Cells ; 12(3)2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36766696

RESUMEN

The modern fluorescence microscope is the convergence point of technologies with different performances in terms of statistical sampling, number of simultaneously analyzed signals, and spatial resolution. However, the best results are usually obtained by maximizing only one of these parameters and finding a compromise for the others, a limitation that can become particularly significant when applied to cell biology and that can reduce the spreading of novel optical microscopy tools among research laboratories. Super resolution microscopy and, in particular, molecular localization-based approaches provide a spatial resolution and a molecular localization precision able to explore the scale of macromolecular complexes in situ. However, its use is limited to restricted regions, and consequently few cells, and frequently no more than one or two parameters. Correlative microscopy, obtained by the fusion of different optical technologies, can consequently surpass this barrier by merging results from different spatial scales. We discuss here the use of an acquisition and analysis correlative microscopy pipeline to obtain high statistical sampling, high content, and maximum spatial resolution by combining widefield, confocal, and molecular localization microscopy.


Asunto(s)
Microscopía Fluorescente , Microscopía Fluorescente/métodos , Sustancias Macromoleculares
3.
Front Oncol ; 12: 960734, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36313693

RESUMEN

In situ multiplexing analysis and in situ transcriptomics are now providing revolutionary tools to achieve the comprehension of the molecular basis of cancer and to progress towards personalized medicine to fight the disease. The complexity of these tasks requires a continuous interplay among different technologies during all the phases of the experimental procedures. New tools are thus needed and their characterization in terms of performances and limits is mandatory to reach the best resolution and sensitivity. We propose here a new experimental pipeline to obtain an optimized costs-to-benefits ratio thanks to the alternate employment of automated and manual procedures during all the phases of a multiplexing experiment from sample preparation to image collection and analysis. A comparison between ultra-fast and automated immunofluorescence staining and standard staining protocols has been carried out to compare the performances in terms of antigen saturation, background, signal-to-noise ratio and total duration. We then developed specific computational tools to collect data by automated analysis-driven fluorescence microscopy. Computer assisted selection of targeted areas with variable magnification and resolution allows employing confocal microscopy for a 3D high resolution analysis. Spatial resolution and sensitivity were thus maximized in a framework where the amount of stored data and the total requested time for the procedure were optimized and reduced with respect to a standard experimental approach.

4.
Int J Mol Sci ; 23(17)2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36077590

RESUMEN

53BP1 protein has been isolated in-vitro as a putative p53 interactor. From the discovery of its engagement in the DNA-Damage Response (DDR), its role in sustaining the activity of the p53-regulated transcriptional program has been frequently under-evaluated, even in the case of a specific response to numerous DNA Double-Strand Breaks (DSBs), i.e., exposure to ionizing radiation. The localization of 53BP1 protein constitutes a key to decipher the network of activities exerted in response to stress. We present here an automated-microscopy for image cytometry protocol to analyze the evolution of the DDR, and to demonstrate how 53BP1 moved from damaged sites, where the well-known interaction with the DSB marker γH2A.X takes place, to nucleoplasm, interacting with p53, and enhancing the transcriptional regulation of the guardian of the genome protein. Molecular interactions have been quantitatively described and spatiotemporally localized at the highest spatial resolution by a simultaneous analysis of the impairment of the cell-cycle progression. Thanks to the high statistical sampling of the presented protocol, we provide a detailed quantitative description of the molecular events following the DSBs formation. Single-Molecule Localization Microscopy (SMLM) Analysis finally confirmed the p53-53BP1 interaction on the tens of nanometers scale during the distinct phases of the response.


Asunto(s)
Roturas del ADN de Doble Cadena , Proteína p53 Supresora de Tumor , ADN/metabolismo , Daño del ADN , Reparación del ADN , Citometría de Imagen , Proteína p53 Supresora de Tumor/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo
5.
Nanomaterials (Basel) ; 12(4)2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35215014

RESUMEN

Super Resolution Microscopy revolutionized the approach to the study of molecular interactions by providing new quantitative tools to describe the scale below 100 nanometers. Single Molecule Localization Microscopy (SMLM) reaches a spatial resolution less than 50 nm with a precision in calculating molecule coordinates between 10 and 20 nanometers. However new procedures are required to analyze data from the list of molecular coordinates created by SMLM. We propose new tools based on Image Cross Correlation Spectroscopy (ICCS) to quantify the colocalization of fluorescent signals at single molecule level. These analysis procedures have been inserted into an experimental pipeline to optimize the produced results. We show that Fluorescent NanoDiamonds targeted to an intracellular compartment can be employed (i) to correct spatial drift to maximize the localization precision and (ii) to register confocal and SMLM images in correlative multiresolution, multimodal imaging. We validated the ICCS based approach on defined biological control samples and showed its ability to quantitatively map area of interactions inside the cell. The produced results show that the ICCS analysis is an efficient tool to measure relative spatial distribution of different molecular species at the nanoscale.

6.
Biophys J ; 117(11): 2054-2065, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31732142

RESUMEN

Deciphering the spatiotemporal coordination between nuclear functions is important to understand its role in the maintenance of human genome. In this context, super-resolution microscopy has gained considerable interest because it can be used to probe the spatial organization of functional sites in intact single-cell nuclei in the 20-250 nm range. Among the methods that quantify colocalization from multicolor images, image cross-correlation spectroscopy (ICCS) offers several advantages, namely it does not require a presegmentation of the image into objects and can be used to detect dynamic interactions. However, the combination of ICCS with super-resolution microscopy has not been explored yet. Here, we combine dual-color stimulated emission depletion (STED) nanoscopy with ICCS (STED-ICCS) to quantify the nanoscale distribution of functional nuclear sites. We show that super-resolved ICCS provides not only a value of the colocalized fraction but also the characteristic distances associated to correlated nuclear sites. As a validation, we quantify the nanoscale spatial distribution of three different pairs of functional nuclear sites in MCF10A cells. As expected, transcription foci and a transcriptionally repressive histone marker (H3K9me3) are not correlated. Conversely, nascent DNA replication foci and the proliferating cell nuclear antigen(PCNA) protein have a high level of proximity and are correlated at a nanometer distance scale that is close to the limit of our experimental approach. Finally, transcription foci are found at a distance of 130 nm from replication foci, indicating a spatial segregation at the nanoscale. Overall, our data demonstrate that STED-ICCS can be a powerful tool for the analysis of the nanoscale distribution of functional sites in the nucleus.


Asunto(s)
Núcleo Celular/metabolismo , Microscopía/métodos , Nanotecnología/métodos , Análisis Espectral , Color , Humanos , Células MCF-7
7.
J Biophotonics ; 12(12): e201900164, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31365191

RESUMEN

@Chromatin nanoscale architecture in live cells can be studied by Förster resonance energy transfer (FRET) between fluorescently labeled chromatin components, such as histones. A higher degree of nanoscale compaction is detected as a higher FRET level, since this corresponds to a higher degree of proximity between donor and acceptor molecules. However, in such a system, the stoichiometry of the donors and acceptors engaged in the FRET process is not well defined and, in principle, FRET variations could be caused by variations in the acceptor-to-donor ratio rather than distance. Here, to get a FRET level independent of the acceptor-to-donor ratio, we combine fluorescence lifetime imaging detection of FRET with a normalization of the FRET level to a pixel-wise estimation of the acceptor-to-donor ratio. We use this method to study FRET between two DNA binding dyes staining the nuclei of live cells. We show that this acceptor-to-donor ratio corrected FRET imaging reveals variations of nanoscale compaction in different chromatin environments. As an application, we monitor the rearrangement of chromatin in response to laser-induced microirradiation and reveal that DNA is rapidly decompacted, at the nanoscale, in response to DNA damage induction.


Asunto(s)
Cromatina/metabolismo , ADN/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Colorantes Fluorescentes/química , Colorantes Fluorescentes/metabolismo , Nanotecnología , Supervivencia Celular , ADN/genética , Daño del ADN , Células HeLa , Humanos , Rayos Láser
8.
Nat Methods ; 16(2): 175-178, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30643212

RESUMEN

Image scanning microscopy (ISM) can improve the effective spatial resolution of confocal microscopy to its theoretical limit. However, current implementations are not robust or versatile, and are incompatible with fluorescence lifetime imaging (FLIM). We describe an implementation of ISM based on a single-photon detector array that enables super-resolution FLIM and improves multicolor, live-cell and in-depth imaging, thereby paving the way for a massive transition from confocal microscopy to ISM.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Microscopía Confocal/métodos , Microscopía Fluorescente/métodos , Algoritmos , Animales , Biología Computacional , Células HEK293 , Células HeLa , Humanos , Ratones , Ratones Transgénicos , Mitocondrias/metabolismo , Poro Nuclear/metabolismo , Imagen Óptica , Fotones , Programas Informáticos , Tubulina (Proteína)/química
9.
Nat Commun ; 9(1): 3415, 2018 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-30143630

RESUMEN

Imaging of nuclear structures within intact eukaryotic nuclei is imperative to understand the effect of chromatin folding on genome function. Recent developments of super-resolution fluorescence microscopy techniques combine high specificity, sensitivity, and less-invasive sample preparation procedures with the sub-diffraction spatial resolution required to image chromatin at the nanoscale. Here, we present a method to enhance the spatial resolution of a stimulated-emission depletion (STED) microscope based only on the modulation of the STED intensity during the acquisition of a STED image. This modulation induces spatially encoded variations of the fluorescence emission that can be visualized in the phasor plot and used to improve and quantify the effective spatial resolution of the STED image. We show that the method can be used to remove direct excitation by the STED beam and perform dual color imaging. We apply this method to the visualization of transcription and replication foci within intact nuclei of eukaryotic cells.


Asunto(s)
Estructuras del Núcleo Celular , Microscopía Fluorescente/métodos , Núcleo Celular/metabolismo , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...