Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sustain Energy Fuels ; 8(12): 2777-2788, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38868442

RESUMEN

The recycling of spent lithium-ion batteries (LIBs) is crucial to sustainably manage resources and protect the environment as the use of portable electronics and electric vehicles (EVs) increases. However, the safe recycling of spent LIBs is challenging, as they often contain residual energy. Left untreated, this can trigger a thermal runaway and result in disasters during the recycling process. For efficient recycling, it is important to withdraw any leftover energy from LIBs, regardless of the processing method that follows the discharge. The electrochemical discharge method is a quick and inexpensive method to eliminate this hazard. This method works by immersing batteries in an aqueous inorganic salt solution to discharge LIBs completely and efficiently. Previously, research focus has been on different inorganic salt solutions that release toxic or flammable gaseous products during discharge. In contrast, we present an entirely new approach for electrochemical discharge - the utilization of an Fe(ii)-Fe(iii) redox couple electrolyte. We show that this medium can be used for efficient LIB deep discharge to a voltage of 2.0 V after rebound, a level that is low enough for safe discharge. To accomplish this, periodic discharge methods were used. In addition, no corrosion on the battery casing was observed. The pH behavior at the poles was also investigated, and it was found that without convection, gas evolution during discharge cannot be avoided. Finally, it was discovered that the battery casing material plays a vital role in electrochemical discharge, and its industrial standardization would facilitate efficient recycling.

2.
Phys Chem Chem Phys ; 26(25): 17476-17480, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38887834

RESUMEN

Galvani potential differences between aqueous and organic phases of biphasic flow batteries can be utilized to boost the cell voltage by ca. 600 mV. This effect is demonstrated by comparing batteries utilizing three different solvents, trifluorotoluene, dichloroethane and propylene carbonate, with ferrocene and decamethyl ferrocene as model organic redox couples.

3.
Small ; : e2309607, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38757541

RESUMEN

Understanding the oxidation/reduction dynamics of secondary microparticles formed from agglomerated nanoscale primary particles is crucial for advancing electrochemical energy storage technologies. In this study, the behavior of individual copper hexacyanoferrate (CuHCF) microparticles is explored at both global and local scales combining scanning electrochemical microscopy (SECM), for electrochemical interrogation of a single, but global-scale microparticle, and optical microscopy monitoring to obtain a higher resolution dynamic image of the local electrochemistry within the same particle. Chronoamperometric experiments unveil a multistep oxidation/reduction process with varying dynamics. On the one hand, the global SECM analysis enables quantifying the charge transfer as well as its dynamics at the single microparticle level during the oxidation/reduction cycles by a redox mediator in solution. These conditions allow mimicking the charge storage processes in these particles when they are used as solid boosters in redox flow batteries. On the other hand, optical imaging with sub-particle resolution allows the mapping of local conversion rates and state-of-charge within individual CuHCF particles. These maps reveal that regions of different material loadings exhibit varying charge storage capacities and conversion rates. The findings highlight the significance of porous nanostructures and provide valuable insights for designing more efficient energy storage materials.

4.
Chemistry ; 30(36): e202400828, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38640462

RESUMEN

Pyridoxal hydrochloride, a vitamin B6 vitamer, was synthetically converted to a series of diverse redox-active benzoyl pyridinium salts. Cyclic voltammetry studies demonstrated redox reversibility under basic conditions, and two of the most promising salts were subjected to laboratory-scale flow battery tests involving galvanostatic cycling at 10 mM in 0.1 M NaOH. In these tests, the battery was charged completely, corresponding to the transfer of two electrons to the electrolyte, but no discharge was observed. Both CV analysis and electrochemical simulations confirmed that the redox wave observed in the experimental voltammograms corresponds to a two-electron process. To explain the irreversibility in the battery tests, we conducted bulk electrolysis with the benzoyl pyridinium salts, affording the corresponding benzylic secondary alcohols. Computational studies suggest that the reduction proceeds in three consecutive steps: first electron transfer (ET), then proton-coupled electron transfer (PCET) and finally proton transfer (PT) to give the secondary alcohol. 1H NMR deuterium exchange studies indicated that the last PT step is not reversible in 0.1 M NaOH, rendering the entire redox process irreversible. The apparent reversibility observed in CV at the basic media likely arises from the slow rate of the PT step at the timescale of the measurement.

5.
Digit Discov ; 2(5): 1565-1576, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-38013904

RESUMEN

Proton-electron transfer (PET) reactions are rather common in chemistry and crucial in energy storage applications. How electrons and protons are involved or which mechanism dominates is strongly molecule and pH dependent. Quantum chemical methods can be used to assess redox potential (Ered.) and acidity constant (pKa) values but the computations are rather time consuming. In this work, supervised machine learning (ML) models are used to predict PET reactions and analyze molecular space. The data for ML have been created by density functional theory (DFT) calculations. Random forest regression models are trained and tested on a dataset that we created. The dataset contains more than 8200 quinone-type organic molecules that each underwent two proton and two electron transfer reactions. Both structural and chemical descriptors are used. The HOMO of the reactant and LUMO of the product participating in the oxidation reaction appeared to be strongly associated with Ered.. Trained models using a SMILES-based structural descriptor can efficiently predict the pKa and Ered. with a mean absolute error of less than 1 and 66 mV, respectively. Good prediction accuracy of R2 > 0.76 and >0.90 was also obtained on the external test set for Ered. and pKa, respectively. This hybrid DFT-ML study can be applied to speed up the screening of quinone-type molecules for energy storage and other applications.

6.
ACS Appl Mater Interfaces ; 15(30): 36242-36249, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37489711

RESUMEN

A new highly soluble triazine derivative (SPr)34TpyTz showing three reversible redox processes with fast kinetics and high diffusion coefficients has been synthesized using an efficient, low-cost, and straightforward synthetic route. Concentrated single cell tests and DFT studies reveal a tendency of the reduced triazine species to form aggregates which could be avoided by tuning the supporting electrolyte concentration. Under the right conditions, (SPr)34TpyTz shows no capacity decay and good Coulombic, voltage, and energy efficiencies for the storage of two electrons. The storage of further electrons leads to a higher capacity decay and an increase of the electrolyte pH, suggesting the irreversible protonation of the generated species. So, a plausible mechanism has been proposed. A higher concentration of (SPr)34TpyTz shows slightly higher capacity decay and lower efficiencies due to the aggregate formation.

7.
Chemistry ; 29(44): e202300996, 2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37205719

RESUMEN

N-functionalized pyridinium frameworks derived from the three major vitamers of vitamin B6, pyridoxal, pyridoxamine and pyridoxine, have been screened computationally for consideration as negative electrode materials in aqueous organic flow batteries. A molecular database including the structure and the one-electron standard reduction potential of related pyridinium derivatives has been generated using a computational protocol that combines semiempirical and DFT quantum chemical methods. The predicted reduction potentials span a broad range for the investigated pyridinium frameworks, but pyridoxal derivatives, particularly those involving electron withdrawing substituents, have potentials compatible with the electrochemical stability window of aqueous electrolytes. The stability of radicals formed upon one-electron reduction has been analyzed by a new computational tool proposed recently for large-scale computational screening.

8.
J Phys Chem C Nanomater Interfaces ; 127(7): 3398-3407, 2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36865990

RESUMEN

The kinetic rates of electrochemical reactions depend on electrodes and molecules in question. In a flow battery, where the electrolyte molecules are charged and discharged on the electrodes, the efficiency of the electron transfer is of crucial importance for the performance of the device. The purpose of this work is to present a systematic atomic-level computational protocol for studying electron transfer between electrolyte and electrode. The computations are done by using constrained density functional theory (CDFT) to ensure that the electron is either on the electrode or in the electrolyte. The ab initio molecular dynamics (AIMD) is used to simulate the movement of the atoms. We use the Marcus theory to predict electron transfer rates and the combined CDFT-AIMD approach to compute the parameters for the Marcus theory where it is needed. We model the electrode with a single layer of graphene and methylviologen, 4,4'-dimethyldiquat, desalted basic red 5, 2-hydroxy-1,4-naphthaquinone, and 1,1-di(2-ethanol)-4,4-bipyridinium were selected for the electrolyte molecules. All of these molecules undergo consecutive electrochemical reactions with one electron being transferred at each stage. Because of significant electrode-molecule interactions, it is not possible to evaluate outer-sphere ET. This theoretical study contributes toward the development of a realistic-level prediction of electron transfer kinetics suitable for energy storage applications.

9.
Chem Asian J ; 17(24): e202200731, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36208291

RESUMEN

Single-entity collisional electrochemistry (SECE) can capture physicochemical information at the single entity level. In the present work, we systematically studied in-situ generation and detection of single anionic ionosomes via SECE combined with a miniaturized interface between two immiscible electrolyte solutions (ITIES). Ionosome is an ionic-bilayer encapsulated nanoscopic water cluster/droplet that carries a net charge. Discrete spiky ionic currents were observed upon collisions/fusions of individual F- or Cl- -ionosomes with a positively polarized micro-ITIES. This fusion process was proved to follow the bulk electrolysis model. With this method, some essential factors such as concentration and charge density of the hydrated anions, and the interfacial area, were revealed. It demonstrates that anionic ionosomes share a common theoretical framework with their counterparts (i. e., cationic ionosomes, like Li+ -ionosomes). This work will spur the advancements in a myriad of fields, including such as the colloid and interface science, micro- and/or nanoscale electrochemistry, and electrophysiology and brain sciences.


Asunto(s)
Agua , Electroquímica , Cationes , Aniones
10.
Chem Commun (Camb) ; 58(91): 12692-12695, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36305205

RESUMEN

An anionic gamma-aminobutyric acid-functionalized naphthalene diimide (GABA-NDI) was investigated for its possible application in flow batteries. A GABA-NDI/ferrocyanide flow battery was stable over 200 cycles and demonstrated an average coulombic efficiency of 99.96% and an excellent energy efficiency of 80.9% at 60 mA cm-2 while accessing 95% of the theoretical capacity of GABA-NDI. An increase in solubility and stability was achieved compared to previous studies.

11.
ChemElectroChem ; 8(15): 2950-2955, 2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-34589380

RESUMEN

Scanning electrochemical microscopy (SECM) is able to track the local electrochemical activity of an electrolyte-immersed substrate employing an ultra-micro-electrode (UME) in micrometer-scale spatial resolution. In this study, SECM is employed to investigate the presence of oxygen in the electrocatalyst layers of polymer electrolyte membrane fuel cells and electrolyzers. Approach curves on electrocatalyst layers with the tip potential set for oxygen reduction reveal that a significant amount of oxygen is absorbed in the catalyst layer. We confirm that the coexistence of Nafion ionomer and carbon black leads to oxygen confinement. It is suggested that this oxygen is confined within the hydrophobic parts of the self-assembled Nafion on the graphitic surfaces of the carbon black.

12.
J Am Chem Soc ; 143(20): 7671-7680, 2021 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-33978400

RESUMEN

Emulsification of immiscible two-phase fluids, i.e., one condensed phase dispersed homogeneously as tiny droplets in an outer continuous medium, plays a key role in medicine, food, chemical separations, cosmetics, fabrication of micro- and nanoparticles and capsules, and dynamic optics. Herein, we demonstrate that water clusters/droplets can be formed in an organic phase via the spontaneous assembling of ionic bilayers. We term these clusters ionosomes, by analogy with liposomes where water clusters are encapsulated in a bilayer of lipid molecules. The driving force for the generation of ionosomes is a unique asymmetrical electrostatic attraction at the water/oil interface: small and more mobile hydrated ions reside in the inner aqueous side, which correlate tightly with the lipophilic bulky counterions in the adjacent outer oil side. These ionosomes can be formed through electrochemical (using an external power source) or chemical (by salt distribution) polarization at the liquid-liquid interface. The charge density of the cations, the organic solvent, and the synergistic effects between tetraethylammonium and lithium cations, all affecting the formation of ionosomes, were investigated. These results clearly prove that a new emulsification strategy is developed providing an alternative and generic platform, besides the canonical emulsification procedure with either ionic or nonionic surfactants as emulsifiers. Finally, we also demonstrate the detection of individual ionosomes via single-entity electrochemistry.

13.
Molecules ; 26(8)2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33917004

RESUMEN

Solid boosters are an emerging concept for improving the performance and especially the energy storage density of the redox flow batteries, but thermodynamical and practical considerations of these systems are missing, scarce or scattered in the literature. In this paper we will formulate how these systems work from the point of view of thermodynamics. We describe possible pathways for charge transfer, estimate the overpotentials required for these reactions in realistic conditions, and illustrate the range of energy storage densities achievable considering different redox electrolyte concentrations, solid volume fractions and solid charge storage densities. Approximately 80% of charge storage capacity of the solid can be accessed if redox electrolyte and redox solid have matching redox potentials. 100 times higher active areas are required from the solid boosters in the tank to reach overpotentials of <10 mV.

14.
Chemistry ; 26(32): 7250-7257, 2020 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-32267982

RESUMEN

The MnIII /MnII redox couple with a standard potential of +1.51 V versus the standard hydrogen electrode (SHE) has attracted interest for the design of V/Mn redox flow batteries (RFBs). However, MnIII disproportionation leads to a loss of capacity, an increase in pressure drop, and electrode passivation caused by the formation of MnO2 particles during battery cycling. In this work, the influence of TiIV or/and VV on MnIII stability in acidic conditions is studied by formulating four different electrolytes in equimolar ratios (Mn, Mn/Ti, Mn/V, Mn/V/Ti). Voltammetry studies have revealed an ECi process for MnII oxidation responsible for the electrode passivation. SEM and XPS analysis demonstrate that the nature and morphology of the passivating oxides layer depend strongly on the electrolyte composition. Spectroelectrochemistry highlights the stabilization effect of TiIV and VV on MnIII . At a comparable pH, the amount of MnIII loss through disproportionation is decreased by a factor of 2.5 in the presence of TiIV or/and VV . Therefore, VV is an efficient substitute for TiIV to stabilize the MnIII electrolyte for RFB applications.

15.
Chemistry ; 25(55): 12769-12779, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31287914

RESUMEN

Detailed studies on hydrogen evolution by decamethylruthenocene ([Cp*2 RuII ]) highlighted that metallocenes are capable of photoreducing hydrogen without the need for an additional sensitizer. Electrochemical, gas chromatographic, and spectroscopic (UV/Vis, 1 H and 13 C NMR) measurements corroborated by DFT calculations indicated that the production of hydrogen occurs by a two-step process. First, decamethylruthenocene hydride [Cp*2 RuIV (H)]+ is formed in the presence of an organic acid. Subsequently, [Cp*2 RuIV (H)]+ is reversibly reduced in a heterolytic reaction with one-photon excitation leading to a first release of hydrogen. Thereafter, the resultant decamethylruthenocenium ion [Cp*2 RuIII ]+ is further reduced with a second release of hydrogen by deprotonation of a methyl group of [Cp*2 RuIII ]+ . Experimental and computational data show spontaneous conversion of [Cp*2 RuII ] to [Cp*2 RuIV (H)]+ in the presence of protons. Calculations highlight that the first reduction is endergonic (ΔG0 =108 kJ mol-1 ) and needs an input of energy by light for the reaction to occur. The hydricity of the methyl protons of [Cp*2 RuII ] was also considered.

16.
Phys Chem Chem Phys ; 21(19): 9627-9640, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-31049537

RESUMEN

Closed bipolar electrochemistry in a 4-electrode configuration is a highly versatile, but under-utilized, technique with major potential to emerge as a powerful methodology impacting areas as diverse as spectro-electroanalysis, energy storage, electrocatalysis and electrodeposition. In this perspective, we provide the thermodynamic framework for understanding all such future applications of closed bipolar electrochemistry in a 4-electrode configuration. We distinguish the differences between open and closed bipolar electrochemical cells. In particular, the use of the 4-electrode configuration in both open and closed bipolar electrochemical cells with immiscible aqueous-organic solutions is outlined. A comprehensive overview of the influence of external bias on the thermodynamics underpinning electron transfer from an organic redox couple to an aqueous redox couple, or vice versa, by electrons flowing along a conducting bipolar electrode serving as an electronic bridge is provided. Fermi level equilibration between redox species at opposite poles of a bipolar electrode under external bias is discussed. The concept of the Line of Zero Overpotential (LZO) on the bipolar electrode at steady-state conditions under an external bias is introduced. The influence of a series of experimental variables (redox potential of each redox couple, rate constant of electron transfer at each pole, an excess bulk concentration of one redox couple over the other, and areas of the poles of the bipolar electrode in contact with each electrolyte solution) on the final position of the LZO on the bipolar electrode is highlighted. A cyclic voltammogram obtained using a closed bipolar electrochemical cell in a 4-electrode configuration with immiscible aqueous-organic electrolyte solutions is explained using the thermodynamic theory detailed throughout the perspective. The theory presented herein is equally applicable to a closed bipolar electrochemical cell in a 4-electrode configuration with aqueous electrolyte solutions, each containing redox active species, in both compartments connected by a bipolar electrode.

17.
Langmuir ; 34(8): 2758-2763, 2018 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-29376386

RESUMEN

In this study, we propose a simple shake-flask method to produce micron-size colloidosomes from a liquid-liquid interface functionalized with a gold nanoparticle (AuNP) film. A step-by-step extraction process of an organic phase partially miscible with water led to the formation of raspberry-like structures covered and protected by a gold nanofilm. The distinctive feature of the prepared colloidosomes is a very thin shell consisting of small AuNPs of 12 or 38 nm in diameter instead of several hundred nanometers reported previously. The interesting and remarkable property of the proposed approach is their reversibility: the colloidosomes may be easily transformed back to a nanofilm state simply by adding pure organic solvent. The obtained colloidosomes have a broadband absorbance spectrum, which makes them of great interest in applications such as photothermal therapy, surface-enhanced Raman spectroscopy studies, and microreactor vesicles for interfacial electrocatalysis.

18.
Angew Chem Int Ed Engl ; 57(13): 3464-3468, 2018 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-29377523

RESUMEN

Chronoamperometry was used to study the dynamics of Pt nanoparticle (NP) collision with an inert ultramicroelectrode via electrocatalytic amplification (ECA) in the hydrogen evolution reaction. ECA and dynamic light scattering (DLS) results reveal that the NP colloid remains stable only at low proton concentrations (1.0 mm) under a helium (He) atmosphere, ensuring that the collision events occur at genuinely single NP level. Amperometry of single NP collisions under a He atmosphere shows that each discrete current profile of the collision event evolves from spike to staircase at more negative potentials, while a staircase response is observed at all of the applied potentials under hydrogen-containing atmospheres. The particle size distribution estimated from the diffusion-controlled current in He agrees well with electron microscopy and DLS observations. These results shed light on the interfacial dynamics of the single nanoparticle collision electrochemistry.

19.
Chem Rev ; 118(7): 3722-3751, 2018 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-29381343

RESUMEN

The functionality of liquid-liquid interfaces formed between two immiscible electrolyte solutions (ITIES) can be markedly enhanced by modification with supramolecular assemblies or solid nanomaterials. The focus of this Review is recent progress involving ITIES modified with floating assemblies of gold nanoparticles or "nanofilms". Experimental methods to controllably modify liquid-liquid interfaces with gold nanofilms are detailed. Also, we outline an array of techniques to characterize these gold nanofilms in terms of their physiochemical properties (such as reflectivity, conductivity, catalytic activity, or plasmonic properties) and physical interfacial properties (for example, interparticle spacing and immersion depth at the interface). The ability of floating gold nanofilms to impact a diverse range of fields is demonstrated: in particular, redox electrocatalysis, surface-enhanced Raman spectroscopy (SERS) or surface plasmon resonance (SPR) based sensors, and electrovariable optical devices. Finally, perspectives on applications beyond the state-of-the-art are provided.

20.
Chem Sci ; 8(7): 4795-4803, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28959401

RESUMEN

When a metallic nanoparticle (NP) comes in close contact with an electrode, its Fermi level equilibrates with that of the electrode if their separation is less than the cut-off distance for electron tunnelling. In the absence of chemical reactions in solution, the charge on the metallic nanoparticle is constant outside this range before or after the collision. However, the double layer capacitances of both the electrode and the NP are influenced by each other, varying as the function of distance. Because the charge on the nanoparticle is constant, the outer potential of the metallic NP and hence its Fermi level varies as the capacitance changes. This effect is more pronounced for small particles (<10 nm) in diluted supporting electrolyte solutions, especially if the metallic nanoparticle and the electrode have different potentials of zero charge. Nanoparticles were found to be more electrochemically active in the vicinity of the electrode. For example, the outer potential of a positively-polarized 2 nm radius NP was predicted to decrease by 35 mV or 100 mV (depending on the electrostatic model used to describe the electric double layer), when the NP moved from an electrode at 1 V (vs. its pzc) to the bulk. The force between the equilibrated NP and the electrode is always repulsive when they have the same pzc. Otherwise there can be an attraction even when the NP and the electrode carry charges of the same sign, due to the redistibution of surface charge density at both the NP and electrode surface.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...