Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chemistry ; 30(18): e202303112, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38258932

RESUMEN

Nickel complexes with a two-electron reduced CO2 ligand (CO2 2-, "carbonite") are investigated with regard to the influence alkali metal (AM) ions have as Lewis acids on the activation of the CO2 entity. For this purpose complexes with NiII(CO2)AM (AM=Li, Na, K) moieties were accessed via deprotonation of nickel-formate compounds with (AM)N(iPr)2. It was found that not only the nature of the AM ions in vicinity to CO2 affect the activation, but also the number and the ligation of a given AM. To this end the effects of added (AM)N(R)2, THF, open and closed polyethers as well as cryptands were systematically studied. In 14 cases the products were characterized by X-ray diffraction and correlations with the situation in solution were made. The more the AM ions get detached from the carbonite ligand, the lower is the degree of aggregation. At the same time the extent of CO2 activation is decreased as indicated by the structural and spectroscopic analysis and reactivity studies. Accompanying DFT studies showed that the coordinating AM Lewis acidic fragment withdraws only a small amount of charge from the carbonite moiety, but it also affects the internal charge equilibration between the LtBuNi and carbonite moieties.

2.
Inorg Chem ; 62(2): 769-781, 2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36580657

RESUMEN

Continued efforts are made on the development of earth-abundant metal catalysts for dehydrogenation/hydrolysis of amine boranes. In this study, complex [K-18-crown-6-ether][(NO)2Fe(µ-MePyr)(µ-CO)Fe(NO)2] (3-K-crown, MePyr = 3-methylpyrazolate) was explored as a pre-catalyst for the dehydrogenation of dimethylamine borane (DMAB). Upon evolution of H2(g) from DMAB triggered by 3-K-crown, parallel conversion of 3-K-crown into [(NO)2Fe(N,N'-MePyrBH2NMe2)]- (5) and an iron-hydride intermediate [(NO)2(CO)Fe(µ-H)Fe(CO)(NO)2]- (A) was evidenced by X-ray diffraction/nuclear magnetic resonance/infrared/nuclear resonance vibrational spectroscopy experiments and supported by density functional theory calculations. Subsequent transformation of A into complex [(NO)2Fe(µ-CO)2Fe(NO)2]- (6) is synchronized with the deactivated generation of H2(g). Through reaction of complex [Na-18-crown-6-ether][(NO)2Fe(η2-BH4)] (4-Na-crown) with CO(g) as an alternative synthetic route, isolated intermediate [Na-18-crown-6-ether][(NO)2(CO)Fe(µ-H)Fe(CO)(NO)2] (A-Na-crown) featuring catalytic reactivity toward dehydrogenation of DMAB supports a substrate-gated transformation of a pre-catalyst [(NO)2Fe(µ-MePyr)(µ-CO)Fe(NO)2]- (3) into the iron-hydride species A as an intermediate during the generation of H2(g).

3.
J Am Chem Soc ; 145(1): 7-11, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36542731

RESUMEN

The noncubane [4Fe-4S] cluster identified in the active site of heterodisulfide reductase (HdrB) displays a unique geometry among Fe-S cofactors found in metalloproteins. Here we employ resonance Raman (RR) spectroscopy and density functional theory (DFT) calculations to probe structural, electronic, and vibrational properties of the noncubane cluster in HdrB from a non-methanogenic Desulfovibrio vulgaris (Dv) Hildenborough organism. The immediate protein environment of the two neighboring clusters in DvHdrB is predicted using homology modeling. We demonstrate that in the absence of substrate, the oxidized [4Fe-4S]3+ cluster adopts a "closed" conformation. Upon substrate coordination at the "special" iron center, the cluster core translates to an "open" structure, facilitated by the "supernumerary" cysteine ligand switch from iron-bridging to iron-terminal mode. The observed RR fingerprint of the noncubane cluster, supported by Fe-S vibrational mode analysis, will advance future studies of enzymes containing this unusual cofactor.


Asunto(s)
Proteínas Hierro-Azufre , Proteínas Hierro-Azufre/química , Oxidorreductasas/metabolismo , Espectrometría Raman , Hierro/química , Espectroscopía de Resonancia por Spin del Electrón
4.
Biochemistry ; 60(31): 2419-2424, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34310123

RESUMEN

The human mitochondrial protein, mitoNEET (mNT), belongs to the family of small [2Fe-2S] NEET proteins that bind their iron-sulfur clusters with a novel and characteristic 3Cys:1His coordination motif. mNT has been implicated in the regulation of lipid and glucose metabolisms, iron/reactive oxygen species homeostasis, cancer, and possibly Parkinson's disease. The geometric structure of mNT as a function of redox state and pH is critical for its function. In this study, we combine 57Fe nuclear resonance vibrational spectroscopy with density functional theory calculations to understand the novel properties of this important protein.


Asunto(s)
Cisteína/química , Hierro/química , Lisina/química , Proteínas Mitocondriales/química , Azufre/química , Teoría Funcional de la Densidad , Humanos , Concentración de Iones de Hidrógeno , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Unión Proteica , Dominios Proteicos , Vibración
5.
J Am Chem Soc ; 143(22): 8237-8243, 2021 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-34043346

RESUMEN

[FeFe] hydrogenases are highly active catalysts for the interconversion of molecular hydrogen with protons and electrons. Here, we use a combination of isotopic labeling, 57Fe nuclear resonance vibrational spectroscopy (NRVS), and density functional theory (DFT) calculations to observe and characterize the vibrational modes involving motion of the 2-azapropane-1,3-dithiolate (ADT) ligand bridging the two iron sites in the [2Fe]H subcluster. A -13C2H2- ADT labeling in the synthetic diiron precursor of [2Fe]H produced isotope effects observed throughout the NRVS spectrum. The two precursor isotopologues were then used to reconstitute the H-cluster of [FeFe] hydrogenase from Chlamydomonas reinhardtii (CrHydA1), and NRVS was measured on samples poised in the catalytically crucial Hhyd state containing a terminal hydride at the distal Fe site. The 13C2H isotope effects were observed also in the Hhyd spectrum. DFT simulations of the spectra allowed identification of the 57Fe normal modes coupled to the ADT ligand motions. Particularly, a variety of normal modes involve shortening of the distance between the distal Fe-H hydride and ADT N-H bridgehead hydrogen, which may be relevant to the formation of a transition state on the way to H2 formation.


Asunto(s)
Hidrógeno/metabolismo , Hidrogenasas/química , Proteínas Hierro-Azufre/química , Isótopos de Carbono , Teoría Funcional de la Densidad , Deuterio , Hidrógeno/química , Hidrogenasas/metabolismo , Proteínas Hierro-Azufre/metabolismo , Marcaje Isotópico , Conformación Molecular , Vibración
6.
Angew Chem Int Ed Engl ; 60(29): 15854-15862, 2021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-33783938

RESUMEN

To study metalloenzymes in detail, we developed a new experimental setup allowing the controlled preparation of catalytic intermediates for characterization by various spectroscopic techniques. The in situ monitoring of redox transitions by infrared spectroscopy in enzyme lyophilizate, crystals, and solution during gas exchange in a wide temperature range can be accomplished as well. Two O2 -tolerant [NiFe]-hydrogenases were investigated as model systems. First, we utilized our platform to prepare highly concentrated hydrogenase lyophilizate in a paramagnetic state harboring a bridging hydride. This procedure proved beneficial for 57 Fe nuclear resonance vibrational spectroscopy and revealed, in combination with density functional theory calculations, the vibrational fingerprint of this catalytic intermediate. The same in situ IR setup, combined with resonance Raman spectroscopy, provided detailed insights into the redox chemistry of enzyme crystals, underlining the general necessity to complement X-ray crystallographic data with spectroscopic analyses.


Asunto(s)
Hidrogenasas/química , Hidrogenasas/metabolismo , Solventes/química , Dominio Catalítico , Cristalografía por Rayos X , Liofilización , Modelos Moleculares , Oxidación-Reducción
7.
Inorg Chem ; 60(2): 555-559, 2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33356182

RESUMEN

Nuclear resonance vibrational spectroscopy (NRVS) and density functional theory (DFT) are complementary tools for studying the vibrational and geometric structures of specific isotopically labeled molecular systems. Here we apply NRVS and DFT to characterize the trans-[57Fe(η2-H2)(H)(dppe)2][BPh4] [dppe = 1,2-bis(diphenylphosphino)ethane] complex. Heretofore, most NRVS observations have centered on the spectral region below 1000 cm-1, where the 57Fe signal is strongest. In this work, we show that state-of-the-art synchrotron facilities can extend the observable region to 2000 cm-1 and likely beyond, in measurements that require less than 1 day. The 57Fe-H stretch was revealed at 1915 cm-1, along with the asymmetric 57Fe-H2 stretch at 1774 cm-1. For a small fraction of the H2-dissociated product, the 57Fe-H stretch was detected at 1956 cm-1. The unique sensitivity to 57Fe motion and the isolated nature of the Fe-H/H2 stretching modes enabled NRVS to quantitatively analyze the sample composition.

8.
J Am Chem Soc ; 142(39): 16757-16765, 2020 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-32871082

RESUMEN

Most of our understanding of chemistry derives from atomic-level structures obtained with single-crystal X-ray diffraction. Metal centers in X-ray structures of small organometallic or coordination complexes are often extremely well-defined, with errors in the positions on the order of 10-4-10-5 Å. Determining the metal coordination geometry to high accuracy is essential for understanding metal center reactivity, as even small structural changes can dramatically alter the metal activity. In contrast, the resolution of X-ray structures in proteins is limited typically to the order of 10-1 Å. This resolution is often not sufficient to develop precise structure-activity relations for the metal sites in proteins, because the uncertainty in positions can cover all of the known ranges of bond lengths and bond angles for a given type of metal complex. Here we introduce a new approach that enables the determination of a high-definition structure of the active site of a metalloprotein from a powder sample, by combining magic-angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy, tailored radio frequency (RF) irradiation schemes, and computational approaches. This allows us to overcome the "blind sphere" in paramagnetic proteins, and to observe and assign 1H, 13C, and 15N resonances for the ligands directly coordinating the metal center. We illustrate the method by determining the bond lengths in the structure of the CoII coordination sphere at the core of human superoxide dismutase 1 (SOD) with 0.7 pm precision. The coordination geometry of the resulting structure explains the nonreactive nature of the CoII/ZnII centers in these proteins, which allows them to play a purely structural role.


Asunto(s)
Cobalto/química , Complejos de Coordinación/química , Metaloproteínas/química , Superóxido Dismutasa-1/química , Zinc/química , Sitios de Unión , Humanos , Resonancia Magnética Nuclear Biomolecular
9.
Chem Sci ; 11(21): 5487-5493, 2020 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-34094075

RESUMEN

A diiron complex containing a bridging hydride and a protonated terminal thiolate of the form [(µ,κ2-bdtH)(µ-PPh2)(µ-H)Fe2(CO)5]+ has been investigated through 57Fe nuclear resonance vibrational spectroscopy (NRVS) and interpreted using density functional theory (DFT) calculations. We report the Fe-µH-Fe wagging mode, and indications for Fe-µD stretching vibrations in the D-isotopologue, observed by 57Fe-NRVS. Our combined approach demonstrates an asymmetric sharing of the hydride between the two iron sites that yields two nondegenerate Fe-µH/D stretching vibrations. The studied complex provides an important model relevant to biological hydrogen catalysis intermediates. The complex mimics proposals for the binuclear metal sites in [FeFe] and [NiFe] hydrogenases. It is also an appealing prototype for the 'Janus intermediate' of nitrogenase, which has been proposed to contain two bridging Fe-H-Fe hydrides and two protonated sulfurs at the FeMo-cofactor. The significance of observing indirect effects of the bridging hydride, as well as obstacles in its direct observation, is discussed in the context of biological hydrogen intermediates.

10.
Chem Sci ; 12(6): 2189-2197, 2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-34163984

RESUMEN

The catalytic mechanism of [NiFe]-hydrogenases is a subject of extensive research. Apart from at least four reaction intermediates of H2/H+ cycling, there are also a number of resting states, which are formed under oxidizing conditions. Although not directly involved in the catalytic cycle, the knowledge of their molecular structures and reactivity is important, because these states usually accumulate in the course of hydrogenase purification and may also play a role in vivo during hydrogenase maturation. Here, we applied low-temperature infrared (cryo-IR) and nuclear resonance vibrational spectroscopy (NRVS) to the isolated catalytic subunit (HoxC) of the heterodimeric regulatory [NiFe]-hydrogenase (RH) from Ralstonia eutropha. Cryo-IR spectroscopy revealed that the HoxC protein can be enriched in almost pure resting redox states suitable for NRVS investigation. NRVS analysis of the hydrogenase catalytic center is usually hampered by strong spectral contributions of the FeS clusters of the small, electron-transferring subunit. Therefore, our approach to investigate the FeS cluster-free, 57Fe-labeled HoxC provided an unprecedented insight into the [NiFe] site modes, revealing their contributions in a spectral range otherwise superimposed by FeS cluster-derived bands. Rationalized by density functional theory (DFT) calculations, our data provide structural descriptions of the previously uncharacterized hydroxy- and water-containing resting states. Our work highlights the relevance of cryogenic vibrational spectroscopy and DFT to elucidate the structure of barely defined redox states of the [NiFe]-hydrogenase active site.

11.
ACS Catal ; 10(23): 13890-13894, 2020 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-33680535

RESUMEN

[NiFe]-hydrogenases catalyze the reversible reaction H2 ⇄ 2H+ + 2e-. Their basic module consists of a large subunit, coordinating the NiFe(CO)(CN)2 center, and a small subunit that carries electron-transferring iron-sulfur clusters. Here, we report the in vitro assembly of fully functional [NiFe]-hydrogenase starting from the isolated large and small subunits. Activity assays complemented by spectroscopic measurements revealed a native-like hydrogenase. This approach was used to label exclusively the NiFe(CO)(CN)2 center with 57Fe, enabling a clear view of the catalytic site by means of nuclear resonance vibrational spectroscopy. This strategy paves the way for in-depth studies of [NiFe]-hydrogenase catalytic intermediates.

12.
J Am Chem Soc ; 142(1): 222-232, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31820961

RESUMEN

[FeFe] hydrogenases are extremely active H2-converting enzymes. Their mechanism remains highly controversial, in particular, the nature of the one-electron and two-electron reduced intermediates called HredH+ and HsredH+. In one model, the HredH+ and HsredH+ states contain a semibridging CO, while in the other model, the bridging CO is replaced by a bridging hydride. Using low-temperature IR spectroscopy and nuclear resonance vibrational spectroscopy, together with density functional theory calculations, we show that the bridging CO is retained in the HsredH+ and HredH+ states in the [FeFe] hydrogenases from Chlamydomonas reinhardtii and Desulfovibrio desulfuricans, respectively. Furthermore, there is no evidence for a bridging hydride in either state. These results agree with a model of the catalytic cycle in which the HredH+ and HsredH+ states are integral, catalytically competent components. We conclude that proton-coupled electron transfer between the two subclusters is crucial to catalysis and allows these enzymes to operate in a highly efficient and reversible manner.


Asunto(s)
Monóxido de Carbono/química , Hidrogenasas/metabolismo , Proteínas Hierro-Azufre/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Chlamydomonas reinhardtii/metabolismo , Teoría Funcional de la Densidad , Desulfovibrio desulfuricans/metabolismo , Transporte de Electrón , Resonancia Magnética Nuclear Biomolecular/métodos
13.
Chem Sci ; 10(32): 7535-7541, 2019 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-31588304

RESUMEN

Iron-sulfur clusters are common building blocks for electron transport and active sites of metalloproteins. Their comprehensive investigation is crucial for understanding these enzymes, which play important roles in modern biomimetic catalysis and biotechnology applications. We address this issue by utilizing (Et4N)3[Fe4Te4(SPh)4], a tellurium modified version of a conventional reduced [4Fe-4S]+ cluster, and performed both 57Fe- and 125Te-NRVS to reveal its characteristic vibrational features. Our analysis exposed major differences in the resulting 57Fe spectrum profile as compared to that of the respective [4Fe-4S] cluster, and between the 57Fe and 125Te profiles. DFT calculations are applied to rationalize structural, electronic, vibrational, and redox-dependent properties of the [4Fe-4Te]+ core. We herein highlight the potential of sulfur/tellurium exchange as a method to isolate the iron-only motion in enzymatic systems.

14.
J Phys Chem Lett ; 10(21): 6794-6799, 2019 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-31580680

RESUMEN

[FeFe] hydrogenases are very active enzymes that catalyze the reversible conversion of molecular hydrogen into protons and electrons. Their active site, the H-cluster, contains a unique binuclear iron complex, [2Fe]H, with CN- and CO ligands as well as an aza-propane-dithiolate (ADT) moiety featuring a central amine functionality that mediates proton transfer during catalysis. We present a pulsed 13C-ENDOR investigation of the H-cluster in which the two methylene carbons of ADT are isotope labeled with 13C. We observed that the corresponding two 13C hyperfine interactions are of opposite sign and corroborated this finding using density functional theory calculations. The spin polarization in the ADT ligand is shown to be linked to the asymmetric coordination of the distal iron site with its terminal CN- and CO ligands. We propose that this asymmetry is relevant for the enzyme reactivity and is related to the (optimal) stabilization of the iron-hydride intermediate in the catalytic cycle.

15.
Angew Chem Int Ed Engl ; 57(33): 10605-10609, 2018 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-29923293

RESUMEN

A combination of nuclear resonance vibrational spectroscopy (NRVS), FTIR spectroscopy, and DFT calculations was used to observe and characterize Fe-H/D bending modes in CrHydA1 [FeFe]-hydrogenase Cys-to-Ser variant C169S. Mutagenesis of cysteine to serine at position 169 changes the functional group adjacent to the H-cluster from a -SH to -OH, thus altering the proton transfer pathway. The catalytic activity of C169S is significantly reduced compared to that of native CrHydA1, presumably owing to less efficient proton transfer to the H-cluster. This mutation enabled effective capture of a hydride/deuteride intermediate and facilitated direct detection of the Fe-H/D normal modes. We observed a significant shift to higher frequency in an Fe-H bending mode of the C169S variant, as compared to previous findings with reconstituted native and oxadithiolate (ODT)-substituted CrHydA1. On the basis of DFT calculations, we propose that this shift is caused by the stronger interaction of the -OH group of C169S with the bridgehead -NH- moiety of the active site, as compared to that of the -SH group of C169 in the native enzyme.


Asunto(s)
Hidrogenasas/química , Dominio Catalítico , Clostridium/enzimología , Teoría Funcional de la Densidad , Desulfovibrio desulfuricans/enzimología , Hidrogenasas/genética , Hidrogenasas/metabolismo , Hierro/química , Mutagénesis Sitio-Dirigida , Protones , Espectroscopía Infrarroja por Transformada de Fourier
16.
Angew Chem Int Ed Engl ; 57(30): 9367-9371, 2018 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-29847703

RESUMEN

High-spin iron species with bridging hydrides have been detected in species trapped during nitrogenase catalysis, but there are few general methods of evaluating Fe-H bonds in high-spin multinuclear iron systems. An 57 Fe nuclear resonance vibrational spectroscopy (NRVS) study on an Fe(µ-H)2 Fe model complex reveals Fe-H stretching vibrations for bridging hydrides at frequencies greater than 1200 cm-1 . These isotope-sensitive vibrational bands are not evident in infrared (IR) spectra, showing the power of NRVS for identifying hydrides in this high-spin iron system. Complementary density functional theory (DFT) calculations elucidate the normal modes of the rhomboidal iron hydride core.


Asunto(s)
Teoría Funcional de la Densidad , Hidrógeno/química , Compuestos de Hierro/química , Hierro/química , Resonancia Magnética Nuclear Biomolecular , Vibración
17.
Inorg Chem ; 57(4): 1988-2001, 2018 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-29384371

RESUMEN

The kinetically robust hydride [t-HFe2(Me2pdt)(CO)2(dppv)2]+ ([t-H1]+) (Me2pdt2- = Me2C(CH2S-)2; dppv = cis-1,2-C2H2(PPh2)2) and related derivatives were prepared with 57Fe enrichment for characterization by NMR, FT-IR, and NRVS. The experimental results were rationalized using DFT molecular modeling and spectral simulations. The spectroscopic analysis was aimed at supporting assignments of Fe-H vibrational spectra as they relate to recent measurements on [FeFe]-hydrogenase enzymes. The combination of bulky Me2pdt2- and dppv ligands stabilizes the terminal hydride with respect to its isomerization to the 5-16 kcal/mol more stable bridging hydride ([µ-H1]+) with t1/2(313.3 K) = 19.3 min. In agreement with the nOe experiments, the calculations predict that one methyl group in [t-H1]+ interacts with the hydride with a computed CH···HFe distance of 1.7 Å. Although [t-H571]+ exhibits multiple NRVS features in the 720-800 cm-1 region containing the bending Fe-H modes, the deuterated [t-D571]+ sample exhibits a unique Fe-D/CO band at ∼600 cm-1. In contrast, the NRVS spectra for [µ-H571]+ exhibit weaker bands near 670-700 cm-1 produced by the Fe-H-Fe wagging modes coupled to Me2pdt2- and dppv motions.

18.
J Am Chem Soc ; 139(46): 16894-16902, 2017 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-29054130

RESUMEN

[FeFe]-hydrogenases are metalloenzymes that reversibly reduce protons to molecular hydrogen at exceptionally high rates. We have characterized the catalytically competent hydride state (Hhyd) in the [FeFe]-hydrogenases from both Chlamydomonas reinhardtii and Desulfovibrio desulfuricans using 57Fe nuclear resonance vibrational spectroscopy (NRVS) and density functional theory (DFT). H/D exchange identified two Fe-H bending modes originating from the binuclear iron cofactor. DFT calculations show that these spectral features result from an iron-bound terminal hydride, and the Fe-H vibrational frequencies being highly dependent on interactions between the amine base of the catalytic cofactor with both hydride and the conserved cysteine terminating the proton transfer chain to the active site. The results indicate that Hhyd is the catalytic state one step prior to H2 formation. The observed vibrational spectrum, therefore, provides mechanistic insight into the reaction coordinate for H2 bond formation by [FeFe]-hydrogenases.


Asunto(s)
Hidrógeno/metabolismo , Hidrogenasas/metabolismo , Hierro/metabolismo , Teoría Cuántica , Biocatálisis , Dominio Catalítico , Chlamydomonas reinhardtii/enzimología , Desulfovibrio desulfuricans/enzimología , Modelos Moleculares , Análisis Espectral , Vibración
19.
J Am Chem Soc ; 139(12): 4306-4309, 2017 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-28291336

RESUMEN

[FeFe]-hydrogenases catalyze the reversible reduction of protons to molecular hydrogen with extremely high efficiency. The active site ("H-cluster") consists of a [4Fe-4S]H cluster linked through a bridging cysteine to a [2Fe]H subsite coordinated by CN- and CO ligands featuring a dithiol-amine moiety that serves as proton shuttle between the protein proton channel and the catalytic distal iron site (Fed). Although there is broad consensus that an iron-bound terminal hydride species must occur in the catalytic mechanism, such a species has never been directly observed experimentally. Here, we present FTIR and nuclear resonance vibrational spectroscopy (NRVS) experiments in conjunction with density functional theory (DFT) calculations on an [FeFe]-hydrogenase variant lacking the amine proton shuttle which is stabilizing a putative hydride state. The NRVS spectra unequivocally show the bending modes of the terminal Fe-H species fully consistent with widely accepted models of the catalytic cycle.


Asunto(s)
Hidrogenasas/química , Proteínas Hierro-Azufre/química , Hierro/química , Hidrogenasas/metabolismo , Hierro/metabolismo , Proteínas Hierro-Azufre/metabolismo , Espectroscopía de Resonancia Magnética , Conformación Molecular , Teoría Cuántica , Espectroscopía Infrarroja por Transformada de Fourier , Agua/química , Agua/metabolismo
20.
Dalton Trans ; 45(17): 7215-9, 2016 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-27063792

RESUMEN

The D14C variant of Pyrococcus furiosus ferredoxin provides an extraordinary framework to investigate a [3Fe-4S] cluster at two oxidation levels and compare the results to its physiologic [4Fe-4S] counterpart in the very same protein. Our spectroscopic and computational study reveals vibrational property changes related to the electronic and structural aspects of both Fe-S clusters.


Asunto(s)
Ferredoxinas , Pyrococcus furiosus/química , Espectroscopía de Resonancia por Spin del Electrón , Oxidación-Reducción , Análisis Espectral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...