Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 15(12)2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38139993

RESUMEN

Pancreatic cancer remains a formidable challenge due to limited treatment options and its aggressive nature. In recent years, the naturally occurring anticancer compound juglone has emerged as a potential therapeutic candidate, showing promising results in inhibiting tumor growth and inducing cancer cell apoptosis. However, concerns over its toxicity have hampered juglone's clinical application. To address this issue, we have explored the use of polymeric micelles as a delivery system for juglone in pancreatic cancer treatment. These micelles, formulated using Poloxamer 407 and D-α-Tocopherol polyethylene glycol 1000 succinate, offer an innovative solution to enhance juglone's therapeutic potential while minimizing toxicity. In-vitro studies have demonstrated that micelle-formulated juglone (JM) effectively decreases proliferation and migration and increases apoptosis in pancreatic cancer cell lines. Importantly, in-vivo, JM exhibited no toxicity, allowing for increased dosing frequency compared to free drug administration. In mice, JM significantly reduced tumor growth in subcutaneous xenograft and orthotopic pancreatic cancer models. Beyond its direct antitumor effects, JM treatment also influenced the tumor microenvironment. In immunocompetent mice, JM increased immune cell infiltration and decreased stromal deposition and activation markers, suggesting an immunomodulatory role. To understand JM's mechanism of action, we conducted RNA sequencing and subsequent differential expression analysis on tumors that were treated with JM. The administration of JM treatment reduced the expression levels of the oncogenic protein MYC, thereby emphasizing its potential as a focused, therapeutic intervention. In conclusion, the polymeric micelles-mediated delivery of juglone holds excellent promise in pancreatic cancer therapy. This approach offers improved drug delivery, reduced toxicity, and enhanced therapeutic efficacy.

2.
Nat Commun ; 14(1): 5665, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37704631

RESUMEN

Triple-negative breast cancer (TNBC) patients have a poor prognosis and few treatment options. Mouse models of TNBC are important for development of new therapies, however, few mouse models represent the complexity of TNBC. Here, we develop a female TNBC murine model by mimicking two common TNBC mutations with high co-occurrence: amplification of the oncogene MYC and deletion of the tumor suppressor PTEN. This Myc;Ptenfl model develops heterogeneous triple-negative mammary tumors that display histological and molecular features commonly found in human TNBC. Our research involves deep molecular and spatial analyses on Myc;Ptenfl tumors including bulk and single-cell RNA-sequencing, and multiplex tissue-imaging. Through comparison with human TNBC, we demonstrate that this genetic mouse model develops mammary tumors with differential survival and therapeutic responses that closely resemble the inter- and intra-tumoral and microenvironmental heterogeneity of human TNBC, providing a pre-clinical tool for assessing the spectrum of patient TNBC biology and drug response.


Asunto(s)
Neoplasias Mamarias Animales , Neoplasias de la Mama Triple Negativas , Animales , Femenino , Humanos , Ratones , Agresión , Modelos Animales de Enfermedad , Mutación , Fosfohidrolasa PTEN/genética , Neoplasias de la Mama Triple Negativas/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo
3.
Sci Adv ; 9(27): eadf6621, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37406115

RESUMEN

Nuclear receptors (NRs) are implicated in the regulation of tumors and immune cells. We identify a tumor-intrinsic function of the orphan NR, NR2F6, regulating antitumor immunity. NR2F6 was selected from 48 candidate NRs based on an expression pattern in melanoma patient specimens (i.e., IFN-γ signature) associated with positive responses to immunotherapy and favorable patient outcomes. Correspondingly, genetic ablation of NR2F6 in a mouse melanoma model conferred a more effective response to PD-1 therapy. NR2F6 loss in B16F10 and YUMM1.7 melanoma cells attenuated tumor development in immune-competent but not -incompetent mice via the increased abundance of effector and progenitor-exhausted CD8+ T cells. Inhibition of NACC1 and FKBP10, identified as NR2F6 effectors, phenocopied NR2F6 loss. Inoculation of NR2F6 KO mice with NR2F6 KD melanoma cells further decreased tumor growth compared with NR2F6 WT mice. Tumor-intrinsic NR2F6 function complements its tumor-extrinsic role and justifies the development of effective anticancer therapies.


Asunto(s)
Linfocitos T CD8-positivos , Melanoma , Animales , Ratones , Inmunoterapia , Melanoma/genética , Proteínas Represoras/metabolismo
4.
bioRxiv ; 2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37503083

RESUMEN

In solid tissues homeostasis and regeneration after injury involve a complex interplay between many different cell types. The mammalian liver harbors numerous epithelial and non-epithelial cells and little is known about the global signaling networks that govern their interactions. To better understand the hepatic cell network, we isolated and purified 10 different cell populations from normal and regenerative mouse livers. Their transcriptomes were analyzed by bulk RNA-seq and a computational platform was used to analyze the cell-cell and ligand-receptor interactions among the 10 populations. Over 50,000 potential cell-cell interactions were found in both the ground state and after partial hepatectomy. Importantly, about half of these differed between the two states, indicating massive changes in the cell network during regeneration. Our study provides the first comprehensive database of potential cell-cell interactions in mammalian liver cell homeostasis and regeneration. With the help of this prediction model, we identified and validated two previously unknown signaling interactions involved in accelerating and delaying liver regeneration. Overall, we provide a novel platform for investigating autocrine/paracrine pathways in tissue regeneration, which can be adapted to other complex multicellular systems.

5.
Front Physiol ; 14: 1215535, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37440997

RESUMEN

Introduction: The response of the brain to space radiation is an important concern for astronauts during space missions. Therefore, we assessed the response of the brain to 28Si ion irradiation (600 MeV/n), a heavy ion present in the space environment, on cognitive performance and whether the response is associated with altered DNA methylation in the hippocampus, a brain area important for cognitive performance. Methods: We determined the effects of 28Si ion irradiation on object recognition, 6-month-old mice irradiated with 28Si ions (600 MeV/n, 0.3, 0.6, and 0.9 Gy) and cognitively tested two weeks later. In addition, we determined if those effects were associated with alterations in hippocampal networks and/or hippocampal DNA methylation. Results: At 0.3 Gy, but not at 0.6 Gy or 0.9 Gy, 28Si ion irradiation impaired cognition that correlated with altered gene expression and 5 hmC profiles that mapped to specific gene ontology pathways. Comparing hippocampal DNA hydroxymethylation following proton, 56Fe ion, and 28Si ion irradiation revealed a general space radiation synaptic signature with 45 genes that are associated with profound phenotypes. The most significant categories were glutamatergic synapse and postsynaptic density. Discussion: The brain's response to space irradiation involves novel excitatory synapse and postsynaptic remodeling.

6.
Nat Commun ; 13(1): 7391, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36450762

RESUMEN

Expression of guide RNAs in the CRISPR/Cas9 system typically requires the use of RNA polymerase III promoters, which are not cell-type specific. Flanking the gRNA with self-cleaving ribozyme motifs to create a self-cleaving gRNA overcomes this limitation. Here, we use self-cleaving gRNAs to create drug-selectable gene editing events in specific hepatocyte loci. A recombinant Adeno Associated Virus vector targeting the Albumin locus with a promoterless self-cleaving gRNA to create drug resistance is linked in cis with the therapeutic transgene. Gene expression of both are dependent on homologous recombination into the target locus. In vivo drug selection for the precisely edited hepatocytes allows >30-fold expansion of gene-edited cells and results in therapeutic levels of a human Factor 9 transgene. Importantly, self-cleaving gRNA expression is also achieved after targeting weak hepatocyte genes. We conclude that self-cleaving gRNAs are a powerful system to enable cell-type specific in vivo drug resistance for therapeutic gene editing applications.


Asunto(s)
ARN Catalítico , ARN Guía de Kinetoplastida , Humanos , ARN Guía de Kinetoplastida/genética , Edición Génica , Recombinación Homóloga , ARN Catalítico/genética , Transgenes
7.
Mol Cell Biol ; 42(7): e0001822, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35703534

RESUMEN

Yes-associated protein 1 (YAP1) is indispensable for the development of mutant KRAS-driven pancreatic ductal adenocarcinoma (PDAC). High YAP1 mRNA is a prognostic marker for worse overall survival in patient samples; however, the regulatory mechanisms that mediate its overexpression are not well understood. YAP1 genetic alterations are rare in PDAC, suggesting that its dysregulation is likely not due to genetic events. HuR is an RNA-binding protein whose inhibition impacts many cancer-associated pathways, including the "conserved YAP1 signature" as demonstrated by gene set enrichment analysis. Screening publicly available and internal ribonucleoprotein immunoprecipitation (RNP-IP) RNA sequencing (RNA-Seq) data sets, we discovered that YAP1 is a high-confidence target, which was validated in vitro with independent RNP-IPs and 3' untranslated region (UTR) binding assays. In accordance with our RNA sequencing analysis, transient inhibition (e.g., small interfering RNA [siRNA] and small-molecular inhibition) and CRISPR knockout of HuR significantly reduced expression of YAP1 and its transcriptional targets. We used these data to develop a HuR activity signature (HAS), in which high expression predicts significantly worse overall and disease-free survival in patient samples. Importantly, the signature strongly correlates with YAP1 mRNA expression. These findings highlight a novel mechanism of YAP1 regulation, which may explain how tumor cells maintain YAP1 mRNA expression at dynamic times during pancreatic tumorigenesis.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Regiones no Traducidas 3'/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Proteína 1 Similar a ELAV/genética , Proteína 1 Similar a ELAV/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , ARN Mensajero/genética , ARN Interferente Pequeño , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Señalizadoras YAP , Neoplasias Pancreáticas
8.
Mol Cancer Res ; 20(7): 1151-1165, 2022 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-35380701

RESUMEN

As a transcription factor that promotes cell growth, proliferation, and apoptosis, c-MYC (MYC) expression in the cell is tightly controlled. Disruption of oncogenic signaling pathways in human cancers can increase MYC protein stability, due to altered phosphorylation ratios at two highly conserved sites, Threonine 58 (T58) and Serine 62 (S62). The T58 to Alanine mutant (T58A) of MYC mimics the stabilized, S62 phosphorylated, and highly oncogenic form of MYC. The S62A mutant is also stabilized, lacks phosphorylation at both Serine 62 and Threonine 58, and has been shown to be nontransforming in vitro. However, several regulatory proteins are reported to associate with MYC lacking phosphorylation at S62 and T58, and the role this form of MYC plays in MYC transcriptional output and in vivo oncogenic function is understudied. We generated conditional c-Myc knock-in mice in which the expression of wild-type MYC (MYCWT), the T58A mutant (MYCT58A), or the S62A mutant (MYCS62A) with or without expression of endogenous Myc is controlled by the T-cell-specific Lck-Cre recombinase. MYCT58A expressing mice developed clonal T-cell lymphomas with 100% penetrance and conditional knock-out of endogenous Myc accelerated this lymphomagenesis. In contrast, MYCS62A mice developed clonal T-cell lymphomas at a much lower penetrance, and the loss of endogenous MYC reduced the penetrance while increasing the appearance of a non-transgene driven B-cell lymphoma with splenomegaly. Together, our study highlights the importance of regulated phosphorylation of MYC at T58 and S62 for T-cell transformation. IMPLICATIONS: Dysregulation of phosphorylation at conserved T58 and S62 residues of MYC differentially affects T-cell development and lymphomagenesis.


Asunto(s)
Linfoma de Células T , Proteínas Proto-Oncogénicas c-myc , Treonina , Animales , Carcinogénesis , Ratones , Fosforilación , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Serina/metabolismo , Linfocitos T/metabolismo , Treonina/genética , Factores de Transcripción/metabolismo
9.
Cancers (Basel) ; 14(7)2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35406624

RESUMEN

Human Antigen R (HuR/ELAVL1) is known to regulate stability of mRNAs involved in pancreatic ductal adenocarcinoma (PDAC) cell survival. Although several HuR targets are established, it is likely that many remain currently unknown. Here, we identified BARD1 mRNA as a novel target of HuR. Silencing HuR caused a >70% decrease in homologous recombination repair (HRR) efficiency as measured by the double-strand break repair (pDR-GFP reporter) assay. HuR-bound mRNAs extracted from RNP-immunoprecipitation and probed on a microarray, revealed a subset of HRR genes as putative HuR targets, including the BRCA1-Associated-Ring-Domain-1 (BARD1) (p < 0.005). BARD1 genetic alterations are infrequent in PDAC, and its context-dependent upregulation is poorly understood. Genetic silencing (siRNA and CRISPR knock-out) and pharmacological targeting of HuR inhibited both full length (FL) BARD1 and its functional isoforms (α, δ, Φ). Silencing BARD1 sensitized cells to olaparib and oxaliplatin; caused G2-M cell cycle arrest; and increased DNA-damage while decreasing HRR efficiency in cells. Exogenous overexpression of BARD1 in HuR-deficient cells partially rescued the HRR dysfunction, independent of an HuR pro-oncogenic function. Collectively, our findings demonstrate for the first time that BARD1 is a bona fide HuR target, which serves as an important regulatory point of the transient DNA-repair response in PDAC cells.

10.
Stem Cell Res ; 56: 102523, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34601385

RESUMEN

BACKGROUND & AIMS: Mature hepatocytes have limited expansion capability in culture and rapidly loose key functions. Recently however, tissue culture conditions have been developed that permit rodent hepatocytes to proliferate and transform into progenitor-like cells with ductal characteristics in vitro. Analogous cells expressing both hepatic and duct markers can be found in human cirrhotic liver in vivo and may represent an expandable population. METHODS: An in vitro culture system to expand epithelial cells from human end stage liver disease organs was developed by inhibiting the canonical TGF-ß, Hedgehog and BMP pathways. RESULTS: Human cirrhotic liver epithelial cells became highly proliferative in vitro. Both gene expression and DNA methylation site analyses revealed that cirrhosis derived epithelial liver cells were intermediate between normal hepatocytes and cholangiocytes. Mouse hepatocytes could be expanded under the same conditions and retained the ability to re-differentiate into hepatocytes upon transplantation. In contrast, human cirrhotic liver derived cells had only low re-differentiation capacity. CONCLUSIONS: Epithelial cells of intermediate ductal-hepatocytic phenotype can be isolated from human cirrhotic livers and expanded in vitro. Unlike their murine counterparts they have limited liver repopulation potential.


Asunto(s)
Hepatocitos , Hígado , Animales , Diferenciación Celular , Células Cultivadas , Células Epiteliales , Cirrosis Hepática , Ratones
12.
J Clin Invest ; 130(1): 231-246, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31763993

RESUMEN

The c-MYC (MYC) oncoprotein is often overexpressed in human breast cancer; however, its role in driving disease phenotypes is poorly understood. Here, we investigate the role of MYC in HER2+ disease, examining the relationship between HER2 expression and MYC phosphorylation in HER2+ patient tumors and characterizing the functional effects of deregulating MYC expression in the murine NeuNT model of amplified-HER2 breast cancer. Deregulated MYC alone was not tumorigenic, but coexpression with NeuNT resulted in increased MYC Ser62 phosphorylation and accelerated tumorigenesis. The resulting tumors were metastatic and associated with decreased survival compared with NeuNT alone. MYC;NeuNT tumors had increased intertumoral heterogeneity including a subtype of tumors not observed in NeuNT tumors, which showed distinct metaplastic histology and worse survival. The distinct subtypes of MYC;NeuNT tumors match existing subtypes of amplified-HER2, estrogen receptor-negative human tumors by molecular expression, identifying the preclinical utility of this murine model to interrogate subtype-specific differences in amplified-HER2 breast cancer. We show that these subtypes have differential sensitivity to clinical HER2/EGFR-targeted therapeutics, but small-molecule activators of PP2A, the phosphatase that regulates MYC Ser62 phosphorylation, circumvents these subtype-specific differences and ubiquitously suppresses tumor growth, demonstrating the therapeutic utility of this approach in targeting deregulated MYC breast cancers.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Neoplasias Mamarias Experimentales/metabolismo , Proteínas Proto-Oncogénicas c-myc/biosíntesis , Receptor ErbB-2/metabolismo , Animales , Línea Celular Tumoral , Femenino , Humanos , Neoplasias Mamarias Experimentales/genética , Neoplasias Mamarias Experimentales/patología , Ratones , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Receptor ErbB-2/genética
13.
Front Mol Biosci ; 6: 77, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31552266

RESUMEN

In this study, an untargeted metabolomics approach was used to assess the effects of proton irradiation (1 Gy of 150 MeV) on the metabolome and DNA methylation pattern in the murine hippocampus and left ventricle of the heart 22 weeks following exposure using an integrated metabolomics-DNA methylation analysis. The integrated metabolomics-DNA methylation analysis in both tissues revealed significant alterations in aminoacyl-tRNA biosynthesis, but the direction of change was tissue-dependent. Individual and total amino acid synthesis were downregulated in the left ventricle of proton-irradiated mice but were upregulated in the hippocampus of proton-irradiated mice. Amino acid tRNA synthetase methylation was mostly downregulated in the hippocampus of proton-irradiated mice, whereas no consistent methylation pattern was observed for amino acid tRNA synthetases in the left ventricle of proton-irradiated mice. Thus, proton irradiation causes long-term changes in the left ventricle and hippocampus in part through methylation-based epigenetic modifications. Integrated analysis of metabolomics and DNA methylation is a powerful approach to obtain converging evidence of pathways significantly affected. This in turn might identify biomarkers of the radiation response, help identify therapeutic targets, and assess the efficacy of mitigators directed at those targets to minimize, or even prevent detrimental long-term effects of proton irradiation on the heart and the brain.

14.
Genes Dev ; 32(21-22): 1398-1419, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30366908

RESUMEN

The transcription factor MYC (also c-Myc) induces histone modification, chromatin remodeling, and the release of paused RNA polymerase to broadly regulate transcription. MYC is subject to a series of post-translational modifications that affect its stability and oncogenic activity, but how these control MYC's function on the genome is largely unknown. Recent work demonstrates an intimate connection between nuclear compartmentalization and gene regulation. Here, we report that Ser62 phosphorylation and PIN1-mediated isomerization of MYC dynamically regulate the spatial distribution of MYC in the nucleus, promoting its association with the inner basket of the nuclear pore in response to proliferative signals, where it recruits the histone acetyltransferase GCN5 to bind and regulate local gene acetylation and expression. We demonstrate that PIN1-mediated localization of MYC to the nuclear pore regulates MYC target genes responsive to mitogen stimulation that are involved in proliferation and migration pathways. These changes are also present at the chromatin level, with an increase in open regulatory elements in response to stimulation that is PIN1-dependent and associated with MYC chromatin binding. Taken together, our study indicates that post-translational modification of MYC controls its spatial activity to optimally regulate gene expression in response to extrinsic signals in normal and diseased states.


Asunto(s)
Poro Nuclear/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Proto-Oncogénicas c-myc/metabolismo , Activación Transcripcional , Animales , Línea Celular , Células Cultivadas , Cromatina/metabolismo , Humanos , Ratones , Ratones Noqueados , Mitógenos/farmacología , Peptidilprolil Isomerasa de Interacción con NIMA/genética , Peptidilprolil Isomerasa de Interacción con NIMA/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-myc/química , Serina/metabolismo , Cicatrización de Heridas , Factores de Transcripción p300-CBP/metabolismo
15.
Nat Commun ; 9(1): 3815, 2018 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-30232459

RESUMEN

Intratumoral heterogeneity in cancers arises from genomic instability and epigenomic plasticity and is associated with resistance to cytotoxic and targeted therapies. We show here that cell-state heterogeneity, defined by differentiation-state marker expression, is high in triple-negative and basal-like breast cancer subtypes, and that drug tolerant persister (DTP) cell populations with altered marker expression emerge during treatment with a wide range of pathway-targeted therapeutic compounds. We show that MEK and PI3K/mTOR inhibitor-driven DTP states arise through distinct cell-state transitions rather than by Darwinian selection of preexisting subpopulations, and that these transitions involve dynamic remodeling of open chromatin architecture. Increased activity of many chromatin modifier enzymes, including BRD4, is observed in DTP cells. Co-treatment with the PI3K/mTOR inhibitor BEZ235 and the BET inhibitor JQ1 prevents changes to the open chromatin architecture, inhibits the acquisition of a DTP state, and results in robust cell death in vitro and xenograft regression in vivo.


Asunto(s)
Neoplasias de la Mama/patología , Diferenciación Celular , Plasticidad de la Célula , Resistencia a Antineoplásicos , Animales , Antineoplásicos/uso terapéutico , Azepinas/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Cromatina/metabolismo , Femenino , Humanos , Ratones Endogámicos NOD , Ratones SCID , Terapia Molecular Dirigida , Triazoles/farmacología , Neoplasias de la Mama Triple Negativas/patología
16.
Nat Commun ; 8(1): 1728, 2017 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-29170413

RESUMEN

Intratumoral phenotypic heterogeneity has been described in many tumor types, where it can contribute to drug resistance and disease recurrence. We analyzed ductal and neuroendocrine markers in pancreatic ductal adenocarcinoma, revealing heterogeneous expression of the neuroendocrine marker Synaptophysin within ductal lesions. Higher percentages of Cytokeratin-Synaptophysin dual positive tumor cells correlate with shortened disease-free survival. We observe similar lineage marker heterogeneity in mouse models of pancreatic ductal adenocarcinoma, where lineage tracing indicates that Cytokeratin-Synaptophysin dual positive cells arise from the exocrine compartment. Mechanistically, MYC binding is enriched at neuroendocrine genes in mouse tumor cells and loss of MYC reduces ductal-neuroendocrine lineage heterogeneity, while deregulated MYC expression in KRAS mutant mice increases this phenotype. Neuroendocrine marker expression is associated with chemoresistance and reducing MYC levels decreases gemcitabine-induced neuroendocrine marker expression and increases chemosensitivity. Altogether, we demonstrate that MYC facilitates ductal-neuroendocrine lineage plasticity in pancreatic ductal adenocarcinoma, contributing to poor survival and chemoresistance.


Asunto(s)
Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Animales , Antineoplásicos/uso terapéutico , Carcinoma Neuroendocrino/tratamiento farmacológico , Carcinoma Neuroendocrino/metabolismo , Carcinoma Neuroendocrino/patología , Carcinoma Ductal Pancreático/tratamiento farmacológico , Diferenciación Celular , Línea Celular Tumoral , Linaje de la Célula , Desoxicitidina/análogos & derivados , Desoxicitidina/uso terapéutico , Resistencia a Antineoplásicos , Femenino , Xenoinjertos , Humanos , Queratinas/metabolismo , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Trasplante de Neoplasias , Células Neuroendocrinas/metabolismo , Células Neuroendocrinas/patología , Neoplasias Pancreáticas/tratamiento farmacológico , Pronóstico , Sinaptofisina/metabolismo , Gemcitabina
17.
Sci Rep ; 7(1): 10227, 2017 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-28860502

RESUMEN

The brain's response to radiation exposure is an important concern for patients undergoing cancer therapy and astronauts on long missions in deep space. We assessed whether this response is specific and prolonged and is linked to epigenetic mechanisms. We focused on the response of the hippocampus at early (2-weeks) and late (20-week) time points following whole body proton irradiation. We examined two forms of DNA methylation, cytosine methylation (5mC) and hydroxymethylation (5hmC). Impairments in object recognition, spatial memory retention, and network stability following proton irradiation were observed at the two-week time point and correlated with altered gene expression and 5hmC profiles that mapped to specific gene ontology pathways. Significant overlap was observed between DNA methylation changes at the 2 and 20-week time points demonstrating specificity and retention of changes in response to radiation. Moreover, a novel class of DNA methylation change was observed following an environmental challenge (i.e. space irradiation), characterized by both increased and decreased 5hmC levels along the entire gene body. These changes were mapped to genes encoding neuronal functions including postsynaptic gene ontology categories. Thus, the brain's response to proton irradiation is both specific and prolonged and involves novel remodeling of non-random regions of the epigenome.


Asunto(s)
Metilación de ADN/efectos de la radiación , Epigenómica/métodos , Hipocampo/efectos de la radiación , Irradiación Corporal Total/métodos , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/análisis , 5-Metilcitosina/efectos de la radiación , Animales , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de la radiación , Redes Reguladoras de Genes/efectos de la radiación , Hipocampo/química , Masculino , Aprendizaje por Laberinto/efectos de la radiación , Ratones , Protones/efectos adversos , Análisis de Secuencia de ARN , Aprendizaje Espacial/efectos de la radiación , Factores de Tiempo
18.
PLoS One ; 12(8): e0181812, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28813430

RESUMEN

The gallbladder and cystic duct (GBCs) are parts of the extrahepatic biliary tree and share a common developmental origin with the ventral pancreas. Here, we report on the very first genetic reprogramming of patient-derived human GBCs to ß-like cells for potential autologous cell replacement therapy for type 1 diabetes. We developed a robust method for large-scale expansion of human GBCs ex vivo. GBCs were reprogrammed into insulin-producing pancreatic ß-like cells by a combined adenoviral-mediated expression of hallmark pancreatic endocrine transcription factors PDX1, MAFA, NEUROG3, and PAX6 and differentiation culture in vitro. The reprogrammed GBCs (rGBCs) strongly induced the production of insulin and pancreatic endocrine genes and these responded to glucose stimulation in vitro. rGBCs also expressed an islet-specific surface marker, which was used to enrich for the most highly reprogrammed cells. More importantly, global mRNA and microRNA expression profiles and protein immunostaining indicated that rGBCs adopted an overall ß-like state and these rGBCs engrafted in immunodeficient mice. Furthermore, comparative global expression analyses identified putative regulators of human biliary to ß cell fate conversion. In summary, we have developed, for the first time, a reliable and robust genetic reprogramming and culture expansion of primary human GBCs-derived from multiple unrelated donors-into pancreatic ß-like cells ex vivo, thus showing that human gallbladder is a potentially rich source of reprogrammable cells for autologous cell therapy in diabetes.


Asunto(s)
Reprogramación Celular , Vesícula Biliar/citología , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Animales , Transdiferenciación Celular , Trasplante de Células , Células Cultivadas , Técnicas de Reprogramación Celular , Análisis por Conglomerados , Expresión Génica , Perfilación de la Expresión Génica , Vectores Genéticos/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Islotes Pancreáticos/citología , Islotes Pancreáticos/metabolismo , Ratones , MicroARNs/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transducción Genética , Transgenes
19.
Stem Cell Reports ; 9(2): 478-489, 2017 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-28689996

RESUMEN

The biliary system plays an important role in several acquired and genetic disorders of the liver. We have previously shown that biliary duct epithelium contains cells giving rise to proliferative Lgr5+ organoids in vitro. However, it remained unknown whether all biliary cells or only a specific subset had this clonogenic activity. The cell surface protease ST14 was identified as a positive marker for the clonogenic subset of cholangiocytes and was used to separate clonogenic and non-clonogenic duct cells by fluorescence-activated cell sorting. Only ST14hi duct cells had the ability to generate organoids that could be serially passaged. The gene expression profiles of clonogenic and non-clonogenic duct cells were similar, but several hundred genes were differentially expressed. RNA fluorescence in situ hybridization showed that clonogenic duct cells are interspersed among regular biliary epithelium at a ∼1:3 ratio. We conclude that adult murine cholangiocytes can be subdivided into two populations differing in their proliferative capacity.


Asunto(s)
Conductos Biliares Intrahepáticos/citología , Hígado/citología , Animales , Conductos Biliares Intrahepáticos/metabolismo , Biomarcadores , Supervivencia Celular , Células Cultivadas , Ensayo de Unidades Formadoras de Colonias , Citometría de Flujo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Inmunofenotipificación , Hígado/metabolismo , Regeneración Hepática , Masculino , Ratones , Ratones Noqueados , Organoides/trasplante , Fenotipo , Transcriptoma
20.
Stem Cell Res ; 17(3): 587-596, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27833043

RESUMEN

Direct reprogramming is a promising approach for the replacement of ß cells in diabetes. Reprogramming of cells originating from the endodermal lineage, such as acinar cells in the pancreas, liver cells and gallbladder cells has been of particular interest because of their developmental proximity to ß cells. Our previous work showed that mouse gallbladder epithelium can be partially reprogrammed in vitro to generate islet-like cells (rGBC1). Here, the reprogramming protocol was substantially improved, yielding cells (rGBC2) closer to functional ß cells than the 1st generation method with higher conversion efficiency and insulin expression. In addition to insulin synthesis and processing, rGBC2 presented many hallmark features of ß cells, including insulin secretion in response to high glucose stimulation. Gene expression analysis indicated that rGBC2 clustered closer with ß cells and had a metabolic gene expression profile resembling neonatal ß cells. When transplanted into immune-deficient animals, rGBC2 were stable for at least 5months and further matured in vivo. Taken together, this approach provides further understanding of endodermal lineage conversion and potential for development of cell replacement therapy for type 1 diabetes patients.


Asunto(s)
Reprogramación Celular/fisiología , Vesícula Biliar/citología , Células Secretoras de Insulina/citología , Animales , Modelos Animales de Enfermedad , Femenino , Vesícula Biliar/metabolismo , Perfilación de la Expresión Génica , Humanos , Insulina/biosíntesis , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Masculino , Ratones , Ratones Endogámicos NOD
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA