Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(33): e2402179121, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39110731

RESUMEN

Eusocial organisms typically live in colonies with one reproductive queen supported by thousands of sterile workers. It is widely believed that monogamous mating is a precondition for the evolution of eusociality. Here, we present a theoretical model that simulates a realistic scenario for the evolution of eusociality. In the model, mothers can evolve control over resource allocation to offspring, affecting offspring's body size. The offspring can evolve body-size-dependent dispersal, by which they disperse to breed or stay at the nest as helpers. We demonstrate that eusociality can evolve even if mothers are not strictly monogamous, provided that they can constrain their offspring's reproduction through manipulation. We also observe the evolution of social polymorphism with small individuals that help and larger individuals that disperse to breed. Our model unifies the traditional kin selection and maternal manipulation explanations for the evolution of eusociality and demonstrates that-contrary to current consensus belief-eusociality can evolve despite highly promiscuous mating.


Asunto(s)
Evolución Biológica , Tamaño Corporal , Reproducción , Conducta Sexual Animal , Conducta Social , Animales , Femenino , Conducta Sexual Animal/fisiología , Reproducción/fisiología , Masculino , Modelos Biológicos , Conducta Animal/fisiología
2.
Proc Biol Sci ; 291(2027): 20240538, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39013422

RESUMEN

Eusocial insects belong to distinct queen and worker castes, which, in turn, can be divided into several morphologically specialized castes of workers. Caste determination typically occurs by differential nutrition of developing larvae. We present a model for the coevolution of larval signalling and worker task allocation-both modelled by flexible smooth reaction norms-to investigate the evolution of caste determination mechanisms and worker polymorphism. In our model, larvae evolve to signal their nutritional state to workers. The workers evolve to allocate time to foraging for resources versus feeding the brood, conditional on the larval signals and their body size. Worker polymorphism evolves under accelerating foraging returns of increasing body size, which causes selection to favour large foraging and small nursing workers. Worker castes emerge because larvae evolve to amplify their signals after obtaining some food, which causes them to receive more food, while the other larvae remain unfed. This leads to symmetry-breaking among the larvae, which are either well-nourished or malnourished, thus emerging as small or large workers. Our model demonstrates the evolution of nutrition-dependent caste determination and worker polymorphism by a self-reinforcement mechanism that evolves from the interplay of larval signalling and worker response to the signals.


Asunto(s)
Evolución Biológica , Larva , Animales , Larva/crecimiento & desarrollo , Larva/fisiología , Conducta Social , Insectos/fisiología , Insectos/crecimiento & desarrollo , Comunicación Animal , Modelos Biológicos , Tamaño Corporal
3.
Mol Ecol ; 32(17): 4725-4741, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37401200

RESUMEN

Inferring the chronological and biological age of individuals is fundamental to population ecology and our understanding of ageing itself, its evolution, and the biological processes that affect or even cause ageing. Epigenetic clocks based on DNA methylation (DNAm) at specific CpG sites show a strong correlation with chronological age in humans, and discrepancies between inferred and actual chronological age predict morbidity and mortality. Recently, a growing number of epigenetic clocks have been developed in non-model animals and we here review these studies. We also conduct a meta-analysis to assess the effects of different aspects of experimental protocol on the performance of epigenetic clocks for non-model animals. Two measures of performance are usually reported, the R2 of the association between the predicted and chronological age, and the mean/median absolute deviation (MAD) of estimated age from chronological age, and we argue that only the MAD reflects accuracy. R2 for epigenetic clocks based on the HorvathMammalMethylChip4 was higher and the MAD scaled to age range lower, compared with other DNAm quantification approaches. Scaled MAD tended to be lower among individuals in captive populations, and decreased with an increasing number of CpG sites. We conclude that epigenetic clocks can predict chronological age with relatively high accuracy, suggesting great potential in ecological epigenetics. We discuss general aspects of epigenetic clocks in the hope of stimulating further DNAm-based research on ageing, and perhaps more importantly, other key traits.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Humanos , Animales , Metilación de ADN/genética , Epigénesis Genética/genética , Envejecimiento/genética , Marcadores Genéticos , Epigenómica/métodos
4.
Evol Lett ; 7(3): 132-147, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37251583

RESUMEN

Sex determination (SD) is a crucial developmental process, but its molecular underpinnings are very diverse, both between and within species. SD mechanisms have traditionally been categorized as either genetic (GSD) or environmental (ESD), depending on the type of cue that triggers sexual differentiation. However, mixed systems, with both genetic and environmental components, are more prevalent than previously thought. Here, we show theoretically that environmental effects on expression levels of genes within SD regulatory mechanisms can easily trigger within-species evolutionary divergence of SD mechanisms. This may lead to the stable coexistence of multiple SD mechanisms and to spatial variation in the occurrence of different SD mechanisms along environmental gradients. We applied the model to the SD system of the housefly, a global species with world-wide latitudinal clines in the frequencies of different SD systems, and found that it correctly predicted these clines if specific genes in the housefly SD system were assumed to have temperature-dependent expression levels. We conclude that environmental sensitivity of gene regulatory networks may play an important role in diversification of SD mechanisms.

5.
Proc Biol Sci ; 290(1992): 20222319, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36750184

RESUMEN

Circadian light entrainment in some insects is regulated by blue-light-sensitive cryptochrome (CRY) protein that is expressed in the clock neurons, but this is not the case in hymenopterans. The hymenopteran clock does contain CRY, but it appears to be light-insensitive. Therefore, we investigated the role of retinal photoreceptors in the photic entrainment of the jewel wasp Nasonia vitripennis. Application of monochromatic light stimuli at different light intensities caused phase shifts in the wasp's circadian activity from which an action spectrum with three distinct peaks was derived. Electrophysiological recordings from the compound eyes and ocelli revealed the presence of three photoreceptor classes, with peak sensitivities at 340 nm (ultraviolet), 450 nm (blue) and 530 nm (green). An additional photoreceptor class in the ocelli with sensitivity maximum at 560-580 nm (red) was found. Whereas a simple sum of photoreceptor spectral sensitivities could not explain the action spectrum of the circadian phase shifts, modelling of the action spectrum indicates antagonistic interactions between pairs of spectral photoreceptors, residing in the compound eyes and the ocelli. Our findings imply that the photic entrainment mechanism in N. vitripennis encompasses the neural pathways for measuring the absolute luminance as well as the circuits mediating colour opponency.


Asunto(s)
Proteínas de Drosophila , Avispas , Animales , Proteínas de Drosophila/metabolismo , Ritmo Circadiano/fisiología , Luz , Criptocromos/metabolismo
6.
J Evol Biol ; 36(3): 542-549, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36737674

RESUMEN

Food availability affects the trade-off between maintenance and reproduction in a wide range of organisms, but its effects on social insects remain poorly understood. In social insects, the maintenance-reproduction trade-off seems to be absent in individuals but may appear at the colony level, although this is rarely investigated. In this study, we restricted food availability in a termite species to test how it affects survival and reproduction, both at the individual and colony level. Using Bayesian multivariate response models, we found very minor effects of food restriction on the survival of queens, individual workers or on the colonies. In contrast, queen fecundity was significantly reduced, whereas colony-level fecundity (i.e., the number of dispersing alates, future reproductives) increased under food restriction as workers gave up cooperation within the colony and became alates that dispersed. Our study shows that life-history trade-offs can be mitigated by individuals' social behaviours in social organisms.


Asunto(s)
Isópteros , Humanos , Animales , Teorema de Bayes , Reproducción/fisiología , Fertilidad , Conducta Social
7.
Evol Lett ; 6(6): 450-459, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36579168

RESUMEN

Cooperatively breeding animals live longer than their solitary counterparts. This has been suggested for birds, mole rats, and social insects. A common explanation for these long lifespans is that cooperative breeding evolves more readily in long-lived species because lower mortality reduces the rate of territory turnover and thus leads to a limitation of breeding territories. Here, we reverse this argument and show that-rather than being a cause for its evolution-long lifespans are an evolutionary consequence of cooperative breeding. In evolutionary individual-based simulations, we show that natural selection favors a delayed onset of senescence in cooperative breeders, relative to solitary breeders, because cooperative breeders have a delayed age of first reproduction as helpers wait in a reproductive queue to obtain breeder status. Especially long lifespans evolve in cooperative breeders in which queue positions depend on the helpers' age rank among the helpers within the breeding territory. Furthermore, we show that lower genetic relatedness among group members leads to the evolution of longer lifespans. This is because selection against higher mortality is weaker when mortality reduces competition for breeding between relatives. Our results link the evolutionary theory of ageing with kin selection theory, demonstrating that the evolution of ageing in cooperative breeders is driven by the timing of reproduction and kin structure within breeding territories.

8.
J Anim Ecol ; 91(12): 2400-2411, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36268692

RESUMEN

The innate immune system is essential for survival, yet many immune traits are highly variable between and within individuals. In recent years, attention has shifted to the role of environmental factors in modulating this variation. A key environmental factor is food availability, which plays a major role in shaping life histories, and may affect resource allocation to immune function through its effect on nutritional state. We developed a technique to permanently increase foraging costs in seed-eating birds, and leveraged this technique to study the effects of food availability on the innate immune system over a 3-year period in 230 zebra finches housed in outdoor aviaries. The immune components we studied were haptoglobin, ovotransferrin, nitric oxide, natural antibodies through agglutination, complement-mediated lysis, and killing capacity of Escherichia coli and Candida albicans, covering a broad spectrum of the innate immune system. We explored the effects of food availability in conjunction with other potentially important variables: season, age, sex and manipulated natal brood size. Increased foraging costs affected multiple components of the immune system, albeit in a variable way. Nitric oxide and agglutination levels were lower under harsh foraging conditions, while Escherichia coli killing capacity was increased. Agglutination levels also varied seasonally, but only at low foraging costs. C. albicans killing capacity was lower in winter, and even more so for animals in harsh foraging conditions that were raised in large broods. Effects of food availability on ovotransferrin were also seasonal, and only apparent in males. Haptoglobin levels were independent of foraging costs and season. Males had higher levels of immune function than females for three of the measured immune traits. Innate immune function was independent of age and manipulated natal brood size. Our finding that food availability affects innate immune function suggests that fitness effects of food availability may at least partially be mediated by effects on the immune system. However, food availability effects on innate immunity varied in direction between traits, illustrating the complexity of the immune system and precluding conclusions on the level of disease resistance.


Asunto(s)
Inmunidad , Óxido Nítrico , Animales
9.
Am Nat ; 200(1): 63-80, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35737991

RESUMEN

AbstractEusocial insects-ants, bees, wasps, and termites-are being recognized as model organisms to unravel the evolutionary paradox of aging for two reasons: (1) queens (and kings, in termites) of social insects outlive similarly sized solitary insects by up to several orders of magnitude and (2) all eusocial taxa show a divergence of long queen and shorter worker life spans, despite their shared genomes and even under risk-free laboratory environments. Traditionally, these observations have been explained by invoking the classical evolutionary aging theory: well-protected inside their nests, queens are much less exposed to external hazards than foraging workers, and this provides natural selection the opportunity to favor queens that perform well at advanced ages. Although quite plausible, these verbal arguments have not been backed up by mathematical analysis. Here, for the first time, we provide quantitative models for the evolution of caste-specific aging patterns. We show that caste-specific mortality risks are in general neither sufficient nor necessary to explain the evolutionary divergence in life span between queens and workers and the extraordinary queen life spans. Reproductive monopolization and the delayed production of sexual offspring in highly social colonies lead natural selection to inherently favor queens that live much longer than workers, even when exposed to the same external hazards. Factors that reduce a colony's reproductive skew, such as polygyny and worker reproduction, tend to reduce the evolutionary divergence in life span between queens and workers. Caste-specific extrinsic hazards also affect life span divergence, but to a much smaller extent than reproductive monopolization.


Asunto(s)
Hormigas , Conducta Animal , Envejecimiento , Animales , Abejas/genética , Insectos , Reproducción , Conducta Social
10.
PeerJ ; 10: e12894, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35282275

RESUMEN

The pearl whipray Fontitrygon margaritella (Compagno & Roberts, 1984) is a common elasmobranch in coastal western African waters. However, knowledge on their life-history and trophic ecology remains limited. Therefore, we aimed to determine the growth, maturity and diet of F. margaritella from the Bijagós Archipelago in Guinea-Bissau. Growth was modelled with: von Bertalanffy, Gompertz and logistic functions. Model selection revealed no model significantly outperformed another. The sampled age ranged from less than 1 to 7 years (1.8 ± 1.9 cm, mean ± standard deviation) and size (disc width) ranged from 12.2 to 30.6 cm (18.7 ± 5.2 cm). Size-at-maturity was estimated at 20.3 cm (95% CI [18.8-21.8 cm]) for males and 24.3 cm for females (95% CI [21.9-26.5 cm]), corresponding ages of 2.2 and 3.9 years. The diet differed significantly among young-of-the-year (YOY), juveniles and adults (p = 0.001). Diet of all life stages consisted mainly of crustaceans (27.4%, 28.5%, 33.3%) and polychaetes (12.5%, 26.7%, 20.3%), for YOY, juveniles and adults respectively. This study shows that F. margaritella is relatively fast-growing, matures early and experiences ontogenetic diet shifts. These results contribute to status assessments and conservation efforts of F. margaritella and closely related species.


Asunto(s)
Dieta , Rajidae , Masculino , Animales , Femenino , Guinea Bissau , Ecología
11.
J Evol Biol ; 34(11): 1666-1677, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34551179

RESUMEN

Sex determination (SD) is an essential and ancient developmental process, but the genetic systems that regulate this process are surprisingly variable. Why SD mechanisms vary so much is a longstanding question in evolutionary biology. SD genes are generally located on sex chromosomes which also carry genes that interact epistatically with autosomes to affect fitness. How this affects the evolutionary stability of SD mechanisms is still unknown. Here, we explore how epistatic interactions between a sexually antagonistic (SA) non-SD gene, located on either an ancestral or novel sex chromosome, and an autosomal gene affect the conditions under which an evolutionary transition to a new SD system occurs. We find that when the SD gene is linked to an ancestral sex-chromosomal gene which engages in epistatic interactions, epistasis enhances the stability of the sex chromosomes so that they are retained under conditions where transitions would otherwise occur. This occurs both when weaker fitness effects are associated with the ancestral sex chromosome pair or stronger fitness effects associated with a newly evolved SD gene. However, the probability that novel SD genes spread is unaffected if they arise near genes involved in epistasis. This discrepancy occurs because, on autosomes, SA allele frequencies are typically lower than on sex chromosomes. In our model, increased frequencies of these alleles contribute to a higher frequency of epistasis which may therefore more readily occur on sex chromosomes. Because sex chromosome-autosome interactions are abundant and can take several forms, they may play a large role in maintaining sex chromosomes.


Asunto(s)
Cromosomas Sexuales , Procesos de Determinación del Sexo , Alelos , Evolución Biológica , Frecuencia de los Genes , Cromosomas Sexuales/genética , Procesos de Determinación del Sexo/genética
12.
Evol Lett ; 5(3): 178-186, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34136267

RESUMEN

Queens of eusocial species live extraordinarily long compared to their workers. So far, it has been argued that these lifespan divergences are readily explained by the classical evolutionary theory of ageing. As workers predominantly perform risky tasks, such as foraging and nest defense, and queens stay in the well-protected nests, selection against harmful genetic mutations expressed in old age should be weaker in workers than in queens due to caste differences in extrinsic mortality risk, and thus, lead to the evolution of longer queen and shorter worker lifespans. However, these arguments have not been supported by formal models. Here, we present a model for the evolution of caste-specific ageing in social insects, based on Williams' antagonistic pleiotropy theory of ageing. In individual-based simulations, we assume that mutations with antagonistic fitness effects can act within castes, that is, mutations in early life are accompanied by an antagonistic effect acting in later life, or between castes, where antagonistic effects emerge due to caste antagonism or indirect genetic effects between castes. In monogynous social insect species with sterile workers, large lifespan divergences between castes evolved under all different scenarios of antagonistic effects, but regardless of the degree of caste-specific extrinsic mortality. Mutations with antagonistic fitness effects within castes reduced lifespans of both castes, while mutations with between-caste antagonistic effects decreased worker lifespans more than queen lifespans, and consequently increased lifespan divergences. Our results challenge the central explanatory role of extrinsic mortality for caste-specific ageing in eusocial organisms and suggest that antagonistic pleiotropy affects castes differently due to reproductive monopolization by queens, hence, reproductive division of labor. Finally, these findings provide new insights into the evolution of tissue-specific ageing in multicellular organisms in general.

13.
J Exp Biol ; 224(11)2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34087935

RESUMEN

Early life conditions can affect individuals for life, with harsh developmental conditions resulting in lower fitness, but the underlying mechanisms are not well understood. We hypothesized that immune function may be part of the underlying mechanism, when harsh developmental conditions result in less effective immune function. We tested this hypothesis by comparing innate immune function between zebra finches (Taeniopygia guttata) in adulthood (n=230; age 108-749 days) that were reared in either small or large broods. We used this experimental background to follow up our earlier finding that finches reared in large broods have a shorter lifespan. To render a broad overview of innate immune function, we used an array of six measures: bacterial killing capacity, hemagglutination, hemolysis, haptoglobin, nitric oxide and ovotransferrin. We found no convincing evidence for effects of natal brood size on any of the six measures of innate immune function. This raised the question whether the origin of variation in immune function was genetic, and we therefore estimated heritabilities using animal models. However, we found heritability estimates to be low (range 0.04-0.11) for all measured immune variables, suggesting variation in innate immune function can largely be attributed to environmental effects independent of early-life conditions as modified by natal brood size.


Asunto(s)
Pinzones , Animales , Inmunidad , Longevidad
14.
Philos Trans R Soc Lond B Biol Sci ; 376(1823): 20190729, 2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33678014

RESUMEN

Between the 1930s and 1960s, evolutionary geneticists worked out the basic principles of why organisms age. Despite much progress in the evolutionary biology of ageing since that time, however, many puzzles remain. The perhaps most fundamental of these is the question of which organisms should exhibit senescence and which should not (or which should age rapidly and which should not). The evolutionary origin of ageing from a non-senescent state has been conceptually framed, for example, in terms of the separation between germ-line and soma, the distinction between parents and their offspring, and-in unicellular organisms-the unequal distribution of cellular damage at cell division. These ideas seem to be closely related to the concept of 'division of labour' between reproduction and somatic maintenance. Here, we review these concepts and develop a toy model to explore the importance of such asymmetries for the evolution of senescence. We apply our model to the simplest case of a multicellular system: an organism consisting of two totipotent cells. Notably, we find that in organisms which reproduce symmetrically and partition damage equally, senescence is still able to evolve, contrary to previous claims. Our results might have some bearing on understanding the origin of the germ-line-soma separation and the evolution of senescence in multicellular organisms and in colonial species consisting of multiple types of individuals, such as, for example, eusocial insects with their different castes. This article is part of the theme issue 'Ageing and sociality: why, when and how does sociality change ageing patterns?'


Asunto(s)
Envejecimiento , Evolución Biológica , Diferenciación Celular , División Celular , Insectos/fisiología , Animales , Células Germinativas/fisiología , Modelos Biológicos
15.
J Anim Ecol ; 90(6): 1505-1514, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33694165

RESUMEN

Evolutionary theory suggests that individuals can benefit from deferring the fitness cost of developing under poor conditions to later in life. Although empirical evidence for delayed fitness costs of poor developmental conditions is abundant, individuals that die prematurely have not often been incorporated when estimating fitness, such that age-specific fitness costs, and therefore the relative importance of delayed fitness costs are actually unknown. We developed a Bayesian statistical framework to estimate age-specific reproductive values in relation to developmental conditions. We applied it to data obtained from a long-term longitudinal study of common terns Sterna hirundo, using sibling rank to describe variation in developmental conditions. Common terns have a maximum of three chicks, and later hatching chicks acquire less food, grow more slowly and have a lower fledging probability than their earlier hatched siblings. We estimated fitness costs in adulthood to constitute c. 45% and 70% of the total fitness costs of hatching third and second, respectively, compared to hatching first. This was due to third-ranked hatchlings experiencing especially high pre-fledging mortality, while second-ranked hatchlings had lower reproductive success in adulthood. Both groups had slightly lower adult survival. There was, however, no evidence for sibling rank-specific rates of senescence. We additionally found years with low fledgling production to be associated with particularly strong pre-fledging selection on sibling rank, and with increased adult survival to the next breeding season. This suggests that adults reduce parental allocation to reproduction in poor years, which disproportionately impacts low-ranked offspring. Interpreting these results, we suggest that selection at the level of the individual offspring for delaying fitness costs is counteracted by selection for parental reduction in brood size when resources are limiting.


Asunto(s)
Charadriiformes , Reproducción , Factores de Edad , Animales , Teorema de Bayes , Estudios Longitudinales , Análisis Multivariante
16.
Sci Rep ; 11(1): 2794, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33531528

RESUMEN

Underlying genetic determinants contribute to developing type 2 diabetes (T2D) future diseases. The present study aimed to identify which genetic variants are associated with the incident of the major T2D co-morbid disease. First, we conducted a discovery study by investigating the genetic associations of comorbid diseases within the framework of the Utrecht Cardiovascular Pharmacogenetic studies by turning information of > 25 years follow-up data of 1237 subjects whom were genotyped and included in the discovery study. We performed Cox proportional-hazards regression to examine associations between genetic variants and comorbid diseases including cardiovascular diseases (CVD), chronic eye disease, cancer, neurologic diseases and chronic kidney disease. Secondly, we replicated our findings in two independent cohorts consisting of 1041 subjects. Finally, we performed a meta-analysis by combining the discovery and two replication cohorts. We ascertained 390 (39.7%) incident cases of CVD, 182 (16.2%) of chronic eye disease, 155 (13.8%) of cancer, 31 (2.7%) of neurologic disease and 13 (1.1%) of chronic kidney disease during a median follow-up of 10.2 years. In the discovery study, we identified a total of 39 Single Nucleotide Polymorphisms (SNPs) associated with comorbid diseases. The replication study, confirmed that rs1870849 and rs8051326 may play a role in the incidence of chronic eye disease in T2D patients. Half of patients developed at least one comorbid disease, with CVD occurring most often and earliest followed by chronic eye disease. Further research is needed to confirm the associations of two associated SNPs with chronic eye disease in T2D.


Asunto(s)
Enfermedades Cardiovasculares/epidemiología , Diabetes Mellitus Tipo 2/genética , Oftalmopatías/epidemiología , Neoplasias/epidemiología , Enfermedades del Sistema Nervioso/epidemiología , Insuficiencia Renal Crónica/epidemiología , Adulto , Anciano , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/metabolismo , Comorbilidad , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/metabolismo , Oftalmopatías/genética , Oftalmopatías/metabolismo , Femenino , Estudios de Seguimiento , Predisposición Genética a la Enfermedad , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Neoplasias/genética , Neoplasias/metabolismo , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/metabolismo , Polimorfismo de Nucleótido Simple , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/metabolismo , Factores de Riesgo
17.
Parasitology ; 148(3): 354-360, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33183360

RESUMEN

The acanthocephalan parasite, Polymorphus minutus, manipulates its intermediate hosts' (gammarids) behaviour, presumably to facilitate its transmission to the definitive hosts. A fundamental question is whether this capability has evolved to target gammarids in general, or specifically sympatric gammarids. We assessed the responses to chemical cues from a non-host predator (the three-spined sticklebacks Gasterosteus aculeatus) in infected and non-infected gammarids; two native (Gammarus pulex and Gammarus fossarum), and one invasive (Echinogammarus berilloni) species, all sampled in the Paderborn Plateau (Germany). The level of predator avoidance was assessed by subjecting gammarids to choice experiments with the presence or absence of predator chemical cues. We did not detect any behavioural differences between uninfected and infected G. pulex and E. berilloni, but an elevated degree of predator avoidance in infected G. fossarum. Avoiding non-host predators may ultimately increase the probability of P. minutus' of predation by the definitive host. Our results suggested that P. minutus' ability to alter the host's behaviour may have evolved to specifically target sympatric gammarid host species. Uninfected gammarids did not appear to avoid the non-host predator chemical cues. Overall the results also opened the possibility that parasites may play a critical role in the success or failure of invasive species.


Asunto(s)
Anfípodos/fisiología , Señales (Psicología) , Interacciones Huésped-Parásitos , Conducta Predatoria , Smegmamorpha/fisiología , Animales , Reacción de Prevención , Quimiotaxis , Alemania , Especies Introducidas
18.
PeerJ ; 9: e12633, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35036137

RESUMEN

Intraspecific trait variation (ITV) enables plants to respond to global changes. However, causes for ITV, especially from biotic components such as herbivory, are not well understood. We explored whether small vertebrate herbivores (hares and geese) impact ITV of a dominant clonal plant (Elytrigia atherica) in local communities. Moreover, we looked at the relative importance of their direct (e.g., selective grazing) and indirect effects (altering genotypic richness/diversity and abiotic environment) on ITV. We used exclosures at two successional stages in a Dutch saltmarsh, where grazing pressure at the early successional stage was ca. 1.5 times higher than that of the intermediate successional stage. We measured key functional traits of E. atherica including height, aboveground biomass, flowering (flower or not), specific leaf area, and leaf dry matter content in local communities (1 m × 1 m plots) inside and outside the exclosures. We determined genotypic richness and diversity of each plant using molecular markers. We further measured abiotic variations in topography and clay thickness (a proxy for soil total nitrogen). Structural equation models revealed that small herbivores significantly promoted ITV in height and flowering at the early successional stage, while they marginally promoted ITV in height at the intermediate successional stage. Moreover, the direct effects of herbivores played a major role in promoting ITV. Small herbivores decreased genotypic diversity at the intermediate successional stage, but genotypic richness and diversity did not impact ITV. Small herbivores did not alter topographic variation and variation in clay thickness, but these variations increased ITV in all traits at the early successional stage. Small herbivores may not only impact trait means in plants as studies have shown but also their ITV.

19.
Ecol Evol ; 10(17): 9085-9099, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32953048

RESUMEN

Seasonal polyphenism in Drosophila suzukii manifests itself in two discrete adult morphotypes, the "winter morph" (WM) and the "summer morph" (SM). These morphotypes are known to differ in thermal stress tolerance, and they co-occur during parts of the year. In this study, we aimed to estimate morph-specific survival and fecundity in laboratory settings simulating field conditions. We specifically analyzed how WM and SM D. suzukii differed in mortality and reproduction during and after a period of cold exposure resembling winter and spring conditions in temperate climates. The median lifespan of D. suzukii varied around 5 months for the WM flies and around 7 months for the SM flies. WM flies showed higher survival during the cold-exposure period compared with SM flies, and especially SM males suffered high mortality under these conditions. In contrast, SM flies had lower mortality rates than WM flies under spring-like conditions. Intriguingly, reproductive status (virgin or mated) did not impact the fly survival, either during the cold exposure or during spring-like conditions. Even though the reproductive potential of WM flies was greatly reduced compared with SM flies, both WM and SM females that had mated before the cold exposure were able to continuously produce viable offspring for 5 months under spring-like conditions. Finally, the fertility of the overwintered WM males was almost zero, while the surviving SM males did not suffer reduced fertility. Combined with other studies on D. suzukii monitoring and overwintering behavior, these results suggest that overwintered flies of both morphotypes could live long enough to infest the first commercial crops of the season. The high mortality of SM males and the low fertility of WM males after prolonged cold exposure also highlight the necessity for females to store sperm over winter to be able to start reproducing early in the following spring.

20.
Am J Phys Anthropol ; 173(3): 397-410, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32779763

RESUMEN

The transition from solitary life to sociality is considered one of the major transitions in evolution. In primates, this transition is currently not well understood. Traditional verbal models appear insufficient to unravel the complex interplay of environmental and demographic factors involved in the evolution of primate sociality, and recent phylogenetic reconstructions have produced conflicting results. We therefore analyze a theoretical model for the evolution of female social philopatry that sheds new light on the question why most primates live in groups. In individual-based simulations, we study the evolution of dispersal strategies of both resident females and their offspring. The model reveals that social philopatry can evolve through kin selection, even if retention of offspring is costly in terms of within-group resource competition and provides no direct benefits. Our model supports the role of predator avoidance as a selective pressure for group-living in primates, but it also suggests that a second benefit of group-living, communal resource defense, might be required to trigger the evolution of sizable groups. Lastly, our model reveals that seemingly small differences in demographic parameters can have profound effects on primate social evolution.


Asunto(s)
Fenómenos de Retorno al Lugar Habitual/fisiología , Modelos Biológicos , Primates/fisiología , Conducta Social , Evolución Social , Animales , Antropología Física , Femenino , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...