Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 160(15)2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38619456

RESUMEN

Owing to ring strain, cyclic ketones exhibit complex excited state dynamics with multiple competing photochemical channels active on the ultrafast timescale. While the excited state dynamics of cyclobutanone after π* ← n excitation into the lowest-energy excited singlet (S1) state has been extensively studied, the dynamics following 3s ← n excitation into the higher-lying singlet Rydberg (S2) state are less well understood. Herein, we employ fully quantum multiconfigurational time-dependent Hartree (MCTDH) simulations using a model Hamiltonian as well as "on-the-fly" trajectory-based surface-hopping dynamics (TSHD) simulations to study the relaxation dynamics of cyclobutanone following 3s ← n excitation and to predict the ultrafast electron diffraction scattering signature of these relaxation dynamics. Our MCTDH and TSHD simulations indicate that relaxation from the initially-populated singlet Rydberg (S2) state occurs on the timescale of a few hundreds of femtoseconds to a picosecond, consistent with the symmetry-forbidden nature of the state-to-state transition involved. There is no obvious involvement of excited triplet states within the timeframe of our simulations (<2 ps). After non-radiative relaxation to the electronic ground state (S0), vibrationally hot cyclobutanone has sufficient internal energy to form multiple fragmented products including C2H4 + CH2CO (C2; 20%) and C3H6 + CO (C3; 2.5%). We discuss the limitations of our MCTDH and TSHD simulations, how these may influence the excited state dynamics we observe, and-ultimately-the predictive power of the simulated experimental observable.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...