Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 7(51): 48173-48183, 2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36591150

RESUMEN

Infectious microbial diseases can easily be transferred from person to person in the air or via high contact surfaces. As a result, researchers must aspire to create materials that can be implemented in surface contact applications to disrupt pathogen growth and transmission. This study examines the antimicrobial properties of polyacrylonitrile (PAN) nanofibers coated with silver nanoparticles (AgNPs) and silver(I,III) oxide. PAN was homogenized with varied weight concentrations of silver nitrate (AgNO3) in N,N-dimethylformamide solution, a common organic solvent that serves as both an electrospinning solvent and as a reducing agent that forms AgNPs. The subsequent colloids were electrospun into nanofibers, which were then characterized via various analysis techniques, including scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray analysis, dynamic light scattering, and X-ray photoelectron spectroscopy. A total of 10 microbes, including 7 strains of Gram-positive bacteria, 2 strains of Gram-negative bacteria, and Candida albicans, were incubated with cutouts of various PAN-AgNP nanocomposites using disk diffusion methods to test for the nanocomposites' antimicrobial efficiency. We report that our electrospun PAN-AgNP nanocomposites contain 100% AgO, a rare, mixed oxidation state of silver(I,III) oxide that is a better sterilizing agent than conventional nanosilver. PAN-AgNP nanocomposites also retain a certain degree of antimicrobial longevity; samples stored for approximately 90 days demonstrate a similar antimicrobial activity against Escherichia coli (E. coli) and Lactobacillus crispatus (L. crispatus) when compared to their newly electrospun counterparts. Moreover, our results indicate that PAN-AgNP nanocomposites successfully display antimicrobial activity against various bacteria and fungi strains regardless of their resistance to conventional antibiotics. Our study demonstrates that PAN-AgNP nanocomposites, a novel polymer material with long-term universal antimicrobial stability, can potentially be applied as a universal antimicrobial on surfaces at risk of contracting microbial infections and alleviate issues related to antibiotic overuse and microbial mutability.

2.
Chempluschem ; 84(10): 1508-1511, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31943939

RESUMEN

A simple and efficient continuous flow methodology has been developed for hydrogenation and reductive deuteration of nitriles to yield primary amines and also valuable α,α-dideutero analogues. Raney nickel proved to be a useful catalyst for the transformation of a wide range of nitriles under reasonably mild conditions with excellent deuterium incorporation (>90 %) and quantitative conversion. Among known model compounds, three new deuterated primary amines were prepared. The large-scale synthesis of deuterated tryptamine was also carried out to deliver 1.1 g product under flow conditions.

3.
Molecules ; 22(12)2017 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-29186044

RESUMEN

Given the importance of heterocycle indole derivatives, much effort has been directed toward the development of methods for functionalization of the indole nucleus at N1 and C3 sites. Moreover, the platinum-catalyzed allyation of nucleophiles was an established and efficient way, which has been applied to medicinal and organic chemistry. In our research, the platinum-catalyzed 2,3-disubstitued indoles with allylic acetates was investigated under different conditions. Herein, we established a simple, convenient, and efficient method, which afforded high yield of allylated indoles.


Asunto(s)
Acetatos/química , Compuestos Alílicos/química , Indoles/química , Platino (Metal)/química , Catálisis , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...