Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Technol Health Care ; 32(S1): 65-78, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38669496

RESUMEN

BACKGROUND: Cerebral examination via CTA is always the first choice for patients with unexpected brain injury or different types of brain lesions to detect ruptured hemangiomas, vascular infarcts, or other brain tissue lesions. OBJECTIVE: This study innovated the acrylic gauge with five eccentric circles for computed tomography angiography (CTA) analysis to optimize the spatial resolution via Taguchi's methodology. METHODS: The customized gauge was revised from the V-shaped slit gauge and transferred into five eccentric circles' slit gauge. The gauge was assembled with another six acrylic layers to simulate the human head. Taguchi's L18 orthogonal array was adopted to optimize the spatial resolution of CTA imaging quality. In doing so, six essential factors of CTA are kVp, mAs, spiral rotation pitch, FOV, rotation time of the CT and reconstruction filter, and each factor has either two or three levels to organize into eighteen combinations to simulate the full factor combination of 486 (21 × 35 = 486) times according to Taguchi's recommendation. Three well-trained radiologists ranked the gauge's 18 CTA scanned imaging qualities according to contrast, sharpness, and spatial resolution and derived the unique fish-bone-plot of six factors for further analysis. The optimal factor combination of CTA was proven by follow-up verification and ANOVA to obtain this study's dominant or minor factor. RESULTS: The optimal factor combination of CTA was A2 (120 kVp), B3 (200 mAs), C1 (Pitch 0.6), D2 (FOV 220 mm2), E1 (rotation time 0.33 s), and F3 (Brain sharp, UC). Furthermore, deriving a quantified MDD (minimum detectable difference) to imply the spatial resolution of CTA, a semiauto profile analysis program run in MATLAB and OriginPro was recommended to evaluate the MDD and to suppress the manual error in calculation. Eventually, the derived MDDs of the conventional and optimal factor combinations of CTA were 2.35 and 2.26 mm, respectively, in this study. CONCLUSION: Taguchi's methodology was found applicable for quantifying the CTA imaging quality in practical applications.


Asunto(s)
Angiografía por Tomografía Computarizada , Humanos , Angiografía por Tomografía Computarizada/métodos , Fantasmas de Imagen
2.
Diagnostics (Basel) ; 13(21)2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37958250

RESUMEN

This study mitigated the challenge of head and neck CT angiography by IPA-based time-resolved imaging of contrast kinetics. To this end, 627 cerebral hemorrhage patients with dizziness, brain aneurysm, stroke, or hemorrhagic stroke diagnosis were randomly categorized into three groups, namely, the original dataset (450), verification group (112), and in vivo testified group (65), in the Affiliated BenQ Hospital of Nanjing Medical University. In the first stage, seven risk factors were assigned: age, CTA tube voltage, body surface area, heart rate per minute, cardiac output blood per minute, the actual injected amount of contrast media, and CTA delayed trigger timing. The expectation value of the semi-empirical formula was the CTA number of the patient's left artery (LA). Accordingly, 29 items of the first-order nonlinear equation were calculated via the inverse problem analysis (IPA) technique run in the STATISTICA 7.0 program, yielding a loss function and variance of 3.1837 and 0.8892, respectively. A dimensionless AT was proposed to imply the coincidence, with a lower AT indicating a smaller deviation between theoretical and practical values. The derived formula was confirmed for the verification group of 112 patients, reaching high coincidence, with average ATavg and standard deviation values of 3.57% and 3.06%, respectively. In the second stage, the formula was refined to find the optimal amount of contrast media for the CTA number of LA approaching 400. Finally, the above procedure was applied to head and neck CTA images of the third group of 65 patients, reaching an average CTA number of LA of 407.8 ± 16.2 and finding no significant fluctuations.

3.
Technol Health Care ; 31(S1): 69-79, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37038783

RESUMEN

BACKGROUND: The inverse problem algorithm (IPA) uses mathematical calculations to estimate the expectation value of a specific index according to patient risk factor groups. The contributions of particular risk factors or their cross-interactions can be evaluated and ranked by their importance. OBJECTIVE: This paper quantified the potential risks from multiple biological factors by integrated case studies in clinical diagnosis via the IPA technique. Acting as artificial intelligence field component, this technique constructs a quantified expectation value from multiple patients' biological index series, e.g., the optimal trigger timing for CTA, a particular drug in blood concentration data, the risk for patients with clinical syndromes. METHODS: Common biological indices such as age, body surface area, mean artery pressure, and others are treated as risk factors upon their normalization to the range from -1.0 to +1.0, with a non-dimensional zero point 0.0 corresponding to the average risk factor index. The patients' quantified indices are re-arranged into a large data matrix. Next, the inverse and column matrices of the compromised numerical solution are constructed. RESULTS: This paper discusses quasi-Newton and Rosenbrock analyses performed via the STATISTICA program to solve the above inverse problem, yielding the specific expectation value in the form of a multiple-term nonlinear semi-empirical equation. The extensive background, including six previous publications of these authors' team on IPA, was comprehensively re-addressed and scrutinized, focusing on limitations, stumbling blocks, and validity range of the IPA approach as applied to various tasks of preventive medicine. Other key contributions of this study are detailed estimations of the effect of risk factors' coupling/cross-interactions on the IPA computations and the convergence rate of the derived semi-empirical equation viz. the final constant term. CONCLUSION: The main findings and practical recommendations are considered useful for preventive medicine tasks concerning potential risks of patients with various clinical syndromes.


Asunto(s)
Algoritmos , Inteligencia Artificial , Humanos , Factores de Riesgo
4.
Technol Health Care ; 30(S1): 91-103, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35124587

RESUMEN

BACKGROUND: Radiologists widely use the minimum detectable difference (MDD) concept for inspecting the imaging quality and quantify the spatial resolution of scans. OBJECTIVE: This study adopted Taguchi's dynamic algorithm to optimize the MDD of cardiac CT angiography (CTA) using a V-shaped line gauge and three PMMA phantoms (50, 70, and 90 kg). METHODS: The phantoms were customized in compliance with the ICRU-48 report, whereas the V-shaped line gauge was indigenous to solidify the cardiac CTA scan image quality by two adjacent peaks along the V-shaped slit. Accordingly, the six factors A-F assigned in this study were A (kVp), B (mAs), C (CT pitch), D (FOV), E (iDose), and F (reconstruction filter). Since each factor could have two or three levels, eighteen groups of factor combinations were organized according to Taguchi's dynamic algorithm. Three welltrained radiologists ranked the CTA scan images three times for three different phantoms. Thus, 27 (3 × 3 × 3) ranked scores were summed and averaged to imply the integrated performance of one specific group, and eventually, 18 groups of CTA scan images were analyzed. The unique signal-to-noise ratio (S/N, dB) and sensitivity in the dynamic algorithm were calculated to reveal the true contribution of assigned factors and clarify the situation in routine CTA diagnosis. RESULTS: Minimizing the cross-interactions among factors, the optimal factor combination was found to be as follows: A (100 kVp), B (600 mAs), C (pitch 0.200 mm), D (FOV 280 mm), E (iDose 5), and F (filter XCA). The respective MDD values were 2.15, 2.32, and 1.87 mm for 50, 70, and 90 kg phantoms, respectively. The MDD of the 90 kg phantom had the most precise spatial resolution, while that of the 70 kg phantom was the worst. CONCLUSION: The Taguchi static and dynamic optimization algorithms were compared, and the latter's superiority was substantiated.


Asunto(s)
Angiografía por Tomografía Computarizada , Polimetil Metacrilato , Algoritmos , Humanos , Fantasmas de Imagen , Dosis de Radiación , Tomografía Computarizada por Rayos X/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...