Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Theriogenology ; 200: 155-167, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36806925

RESUMEN

Spermatogenesis is a highly complicated biological process that occurs in the epithelium of the seminiferous tubules. It is regulated by a complex network of endocrine and paracrine factors. Sertoli cells (SCs) play a key role in spermatogenesis due to their production of trophic, differentiation, and immune-modulating factors. However, many of the molecular pathways of SC action remain controversial and unclear. Recently, many studies have focused on exosomes as an important mechanism of intercellular communication. We found that the exosomes derived from mouse SCs inhibited the apoptosis of primary spermatogonia. A total of 1016 miRNAs in SCs and 556 miRNAs in exosomes were detected using miRNA high-throughput sequencing. A total of 294 miRNAs were differentially expressed between SCs and exosomes. Furthermore, 19 tsRNA families appeared in SCs, while 6 tsRNA families appeared in exosomes. A total of 57 and 1 miRNAs (RPM >4) and 14 and 1 tsRNAs were exclusively expressed in SCs and exosomes, respectively. MiR-10b is one of the top ten exosomes with a relatively large enrichment of miRNA. Overexpression of miR-10b downregulates the expression of the target KLF4 to reduce spermatogonial apoptosis in primary spermatogonia or the C18-4 cell line.


Asunto(s)
Exosomas , MicroARNs , Masculino , Ratones , Animales , Espermatogonias/fisiología , Células de Sertoli/metabolismo , MicroARNs/metabolismo , Apoptosis
2.
Gene Expr Patterns ; 47: 119303, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36565945

RESUMEN

The Onychostoma macrolepis (O. macrolepis) is a rare and endangered wild species. Their endangered extinction might be due to their low fertility. To further illustrate the molecular mechanism of gonad development of the male and female O. macrolepis, the present study carried out de novo testicular and ovarian transcriptome sequencing. By comparing ovary and testis, 30,869 differentially expressed unigenes (9870 in female, 20999 in male) were identified. In addition, KEGG and GO analysis suggested that the Hedgehog signaling pathway have important roles in testis maintenance and spermatogenesis, whereas the Hippo signaling pathway and Wnt signaling pathway are likely to participate in ovary maintenance. RT-qPCR analysis results were consistent with transcriptome sequencing that all of gender differentiation-related genes (FOXL2, GDF9, WNT4, CYP19A1, SOX9 and GATA4), temperature-enriched genes (NOVA1, CTGF and NR4A1), clock-related genes (PER2, PER3, CRY1, CRY2, BMAL1 and CIPC) were significantly differential expression in testis compared with ovaries. Taken together, these results revealed a potential molecular mechanism that low fertility of the O. macrolepis might strong correlate with the gonadal dyssynchrony development of the male and female, which might provide theoretical basis and technical support for artificial reproduction and germplasm resource protection of the O. macrolepis.


Asunto(s)
Cyprinidae , Ovario , Animales , Femenino , Masculino , Ovario/metabolismo , Testículo/metabolismo , Perfilación de la Expresión Génica , Proteínas Hedgehog/genética , Gónadas/metabolismo , Transcriptoma , RNA-Seq , Cyprinidae/genética
3.
Gen Comp Endocrinol ; 326: 114066, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35644279

RESUMEN

The Onychostoma macrolepis (O. macrolepis) is a rare and endangered fishery species inhabiting the river of Qinling Mountains and some flowing freshwaters in China. The declining population of O. macrolepis caused by asynchrony of male and female development prompted us to focus on genetic regulation of its reproduction. In this study, high-throughput RNA-sequencing technology was applied to assemble and annotate the transcriptome of O. macrolepis testis and ovary. The results showed that a number of 338089335 (ovary:163216500, testis:174872835) raw sequences were obtained. After non-redundant analysis, a number of 207826065 (ovary:102334008, testis:105492057) high quality reads were obtained and predicted as unigenes, in which 201,038,682 unigenes were annotated with multiple databases. Taking the ovarian transcriptome as a control, comparative transcriptome analysis showed that 9918 differentially expressed genes (DEGs) up-regulated in the testis and 13,095 DEGs down-regulated. Many DEGs were involved with sex-related GO terms and KEGG pathways, such as oocyte maturation, gonadal development, steroid biosynthesis pathways, MAPK signaling pathway and Wnt signaling pathway. Finally, the expression patterns of 19 unigenes were validated by using quantitative real-time polymerase chain reaction (qRT-PCR). This study illustrates a potential molecular mechanism on the unsynchronized male and female development of the O. macrolepis during the reproduction period in June and provides a theoretical basis for future artificial reproduction.


Asunto(s)
Ovario , Transcriptoma , Animales , Femenino , Perfilación de la Expresión Génica/métodos , Masculino , Ovario/metabolismo , Reproducción/genética , Testículo/metabolismo , Transcriptoma/genética
4.
Fish Physiol Biochem ; 48(3): 481-499, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35595880

RESUMEN

The late overwintering period and breeding period are two important developmental stages of testis in Onychostoma macrolepis. Small non-coding RNAs (sncRNAs) are well-known regulators of biological processes associated with numerous biological processes. This study aimed to elucidate the roles of four sncRNA classes (microRNAs [miRNAs], Piwi-interacting RNAs [piRNAs], tRNA-derived small RNAs [tsRNAs], and rRNA-derived small RNAs [rsRNAs]) across testes in the late overwintering period (in March) and breeding period (in June) by high-throughput sequencing. The testis of O. macrolepis displayed the highest levels of piRNAs and lowest levels of rsRNAs. Compared with miRNAs and tsRNAs in June, tsRNAs in March had a higher abundance, while miRNAs in March had a much lower abundance. Bioinformatics analysis identified 1,362 and 1,340 differentially expressed miRNAs and tsRNAs, respectively. Further analysis showed that miR-200-1, miR-143-1, tRFi-Lys-CTT-1, and tRFi-Glu-CTC-1 could play critical roles during the overwintering and breeding periods. Our findings provided an unprecedented insight to reveal the epigenetic mechanism underlying the overwintering and reproduction process of male O. macrolepis.


Asunto(s)
Cyprinidae , MicroARNs , ARN Pequeño no Traducido , Animales , Cyprinidae/genética , Regulación de la Expresión Génica , Masculino , MicroARNs/genética , ARN Pequeño no Traducido/genética , Reproducción/genética , Testículo
5.
Artículo en Inglés | MEDLINE | ID: mdl-35168176

RESUMEN

The development of the ovary of Onychostoma macrolepis undergoes distinct annual cyclic changes in which small non-coding RNAs (sncRNAs) could play vital roles. In this study, four sncRNA classes in the ovary, including miRNA, piRNAs, tsRNA, and rsRNAs, were systematically profiled by high-throughput sequencing. In adult ovaries of O. macrolepis, 247 miRNAs and 235 tsRNAs were identified as differentially expressing in the late overwintering period (in March) and breeding period (in June). Some up-regulated sncRNAs in March, such as miR-125-1 and tRFi-Lys-CTT-1, could be involved in inhibiting biomolecule metabolism and enhancing stress tolerance during the overwintering period. Compared with the level expression of sncRNAs in March, some sncRNAs were up-regulated in June, such as miR-146-1 and tRFi-Gly-GCC-1, and could be involved in influencing molecular synthesis and metabolism, enhancing oocyte proliferation and maturation, accelerating ovarian development, and increasing fertilization of oocytes by regulating related target mRNAs. The results suggested that sncRNAs in the ovary of Onychostoma macrolepis not only reflect characteristics of the fish's physiology at different developmental periods, but also directly affect ovarian development and oocyte maturation during the breeding period. In conclusion, these results significantly advance our understanding of the roles of sncRNA during overwintering and reproduction periods, and provide a novel perspective for uncovering characteristics of the special overwintering ecology and reproductive physiology of an atypical cavefish.


Asunto(s)
Cyprinidae , MicroARNs , ARN Pequeño no Traducido , Animales , Cruzamiento , Cyprinidae/genética , Cyprinidae/metabolismo , Femenino , MicroARNs/genética , Ovario/metabolismo , ARN Pequeño no Traducido/genética , ARN Pequeño no Traducido/metabolismo
6.
J Steroid Biochem Mol Biol ; 212: 105916, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34010686

RESUMEN

Musk secreted by Chinese forest musk deer (FMD; Moschus berezovskii) is a highly valuable ingredient in the fields of perfumery and medicine, and the main factor affecting the production of musk is the androgen level of male FMD. To clarify whether the musk gland of FMD can synthesize androgen, we compared and analyzed the expression patterns of steroid hormone biosynthesis-related genes in the musk gland and testis of FMD by RNA-seq and RT-qPCR. We obtained 33,308 and 38,602 unigenes from the musk gland and testis, respectively, and 26,780 co-expressed unigenes. Analysis of co-expressed genes revealed that 12,647 genes were annotated to 11,484 Gene Ontology terms and 10,941 genes were annotated to 6120 pathways, including several pathways important in metabolic and synthetic activity. Next, 21 steroid hormone synthesis-related genes were screened from the transcriptome of the musk gland of 4-month-old FMD. The expression levels of three key genes of steroid hormone biosynthesis (CYP11A1, CYP17A1, and HSD3B) in the musk gland differed from their expression levels in the testis based on RT-qPCR. Furthermore, immunohistochemistry indicated that CYP11A1, CYP17A1, and HSD3B were localized in the glandular tubular columnar cells of the musk gland. These results suggested that the musk gland of male FMD has the potential to locally synthesize steroid hormone and thus plays a critically important role in musk secretion.


Asunto(s)
3-Hidroxiesteroide Deshidrogenasas/genética , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/genética , Ciervos/genética , Ciervos/metabolismo , Glándulas Exocrinas/metabolismo , Esteroide 17-alfa-Hidroxilasa/genética , Testículo/metabolismo , Andrógenos/metabolismo , Animales , Ácidos Grasos Monoinsaturados/metabolismo , Masculino , Filogenia , Testosterona/metabolismo , Transcriptoma
7.
Reproduction ; 161(2): 159-172, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33434156

RESUMEN

Epididymal specific proteins play a crucial role in sperm maturation. Some of the post-translational modified proteins are transported from the caput to the cauda of the epididymis through exosomes which regulate the function of sperm in cauda epididymis. Rat beta-galactosidase-1-like protein 4 (GLB1L4) expressed specifically in the caput epididymis, localizes on the sperm; however, the regulatory ways in which GLB1L4 protein interacts with sperm to maintain sperm function are unclear. In this study, knockdown of rat GLB1L4 could inhibit in vitro capacitation of sperm in cauda epididymis and reduce the fertility of the male rats by injection of special lentivirus-shRNA into caput epididymis. Moreover, a considerable proportion of GLB1L4 proteins from rat caput epididymis were loaded on exosomes. The exosomes loaded GLB1L4 from in vitro primary rat caput epididymal epithelial cells could bind with spermatozoa in cauda epididymis. Further, the palmitoylation status of cysteine residues at the 12th and 15th sites of the protein molecule could significantly affect cellular localization of GLB1L4 protein. It was identified that most of GLB1L4 was palmitoylated in the presence of exosomes from primary caput epididymal cells and the level of palmitoylated GLB1L4 in the exosomes could be inhibited by 2-bromopalmitate (2-BP). These results suggested that the palmitoylated GLB1L4 from rat caput epididymis could be transported to the cauda epididymis to regulate the sperm function by exosomes.


Asunto(s)
Epidídimo , Exosomas , Animales , Masculino , Proteínas , Ratas , Maduración del Esperma , Espermatozoides
8.
Reprod Fertil Dev ; 32(14): 1212-1222, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33019961

RESUMEN

Melatonin (MLT) is an efficient antioxidant that protects spermatozoa against damages caused by oxidative stress. In this study, to maintain good function of Onychostoma macrolepis spermatozoa during semen preservation invitro at 4°C, different concentrations of MLT (0.5, 1 and 2µM) were added to the semen. After storage (0, 24, 48 and 72h), 1µM MLT in semen markedly improved sperm quality, as reflected by better plasma membrane integrity, the relative steady level of reactive oxygen species (ROS) and slower rate of decrease in mitochondrial membrane potential. Activated spermatozoa in semen with 1µM MLT had higher kinematic performance (i.e. percentage of motile and progressive spermatozoa and the beat cross frequency; P<0.05) and longer duration of sperm motility (P<0.05) compared with spermatozoa in semen withother MLT concentrations. Furthermore, 1µM MLT maintained higher ATP concentrations in spermatozoa during semen storage and significantly improved the fertilising capacity of spermatozoa after 72h semen storage compared with the other MLT concentrations. To expand wild resources of O. macrolepis, 1µM MLT can be used as a semen additive to maintain better sperm function and enhance sperm fertilising capacity in artificial insemination (AI).


Asunto(s)
Adenosina Trifosfato/metabolismo , Fertilización/efectos de los fármacos , Melatonina/farmacología , Especies Reactivas de Oxígeno/metabolismo , Semen/efectos de los fármacos , Semen/metabolismo , Espermatozoides/efectos de los fármacos , Animales , Antioxidantes/farmacología , Cyprinidae , Masculino , Preservación de Semen , Motilidad Espermática/efectos de los fármacos , Espermatozoides/metabolismo
9.
Vet Microbiol ; 224: 34-42, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30269788

RESUMEN

This study focuses on the effect of outer membrane vesicles (OMVs) in gram-negative bacteria on boar sperm function during in vitro storage. In the 40 ejaculates collected from Guangzhong Black boar, six gram-negative bacterial species were detected by 16S rDNA sequencing, of which Proteus mirabilis was the main contaminating bacterium. The OMVs of P. mirabilis were isolated by gradient ultracentrifugation. To reveal the effect of OMVs on boar sperm, different OMV concentrations were added to the Modena medium during sperm storage at 17 °C. Even after 3 days of storage, it was noted that low OMV dose (<5 µg/mL) in the extender did not significantly reduce sperm quality as compared with that in the control semen samples; however, sperm motility and sperm morphology were significantly altered in the extender owing to a high OMV dose (>10 µg/mL). The relative ROS level successively increased with OMV dose in sperm samples and storage time. Meanwhile, OMVs dramatically elevated the mitochondrial potential of sperm. OMVs could bind with the sperm membrane to further influence the capacity of sperm-oocyte binding; they also increased the expression of LC3 and caspase 3 and decreased that of anti-apoptosis-related protein, Bcl2, in sperm. It was concluded that OMVs of P. mirabilis influenced the function of boar sperm by inducing sperm membrane reconstruction as well as autophagy and apoptosis of sperm.


Asunto(s)
Proteus mirabilis/aislamiento & purificación , Semen/microbiología , Espermatozoides/fisiología , Animales , Apoptosis , Autofagia , Proteínas de la Membrana Bacteriana Externa , Masculino , Proteus mirabilis/química , Motilidad Espermática , Espermatozoides/microbiología , Espermatozoides/patología , Porcinos , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA