Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Talanta ; 274: 126003, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38569374

RESUMEN

Antibiotics in aquatic environments raise health concerns. Therefore, the rapid, on-site, and accurate detection of antibiotic residues is crucial for protecting the environment and human health. Herein, a dumbbell-shaped iron (Fe3+)-dopamine coordination nanozyme (Fe-DCzyme) was developed via an iron-driven self-assembly strategy. It exhibited excellent peroxidase-like activity, which can be quenched by adding l-cysteine to prevent Fe3+/Fe2+ electron transfer but restored by adding norfloxacin. Given the 'On-Off-On' effect of peroxidase-like activity, Fe-DCzyme was used as a colourimetric sensor for norfloxacin detection, and showed a wide linear range from 0.05 to 6.00 µM (R2 = 0.9950) and LOD of 27.0 nM. A portable smartphone-assisted detection platform using Fe-DCzyme was also designed to convert norfloxacin-induced color changes into RGB values as well as to realise the rapid, on-site and quantitative detection of norfloxacin. A good linear relation (0.10-6.00 µM) and high sensitivity (LOD = 79.3 nM) were achieved for the smartphone-assisted Fe-DCzyme detection platform. Its application was verified using norfloxacin spiking methods with satisfactory recoveries (92.66%-119.65%). Therefore, the portable smartphone-assisted Fe-DCzyme detection platform with low cost and easy operation can be used for the rapid, on-site and visual quantitative detection of antibiotic residues in water samples.


Asunto(s)
Colorimetría , Dopamina , Hierro , Norfloxacino , Teléfono Inteligente , Norfloxacino/análisis , Norfloxacino/química , Hierro/química , Dopamina/análisis , Dopamina/química , Colorimetría/métodos , Antibacterianos/análisis , Antibacterianos/química , Contaminantes Químicos del Agua/análisis , Límite de Detección , Nanoestructuras/química
2.
ACS Omega ; 9(5): 5728-5733, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38343958

RESUMEN

The research on 811 ternary cathode materials is mainly based on synthesis and modification. However, the preparation process of these materials is accompanied by complex chemical reactions, and the reaction process and corresponding kinetic analysis have not been widely explored. Under different oxygen concentrations, this study analyzed the chemical reaction mechanism of the raw material's (namely, Ni0.8Co0. 1Mn0. 1(OH)2 and LiOH·H2O mixture, which is referred to as the raw material hereinafter) calcination process by non-isothermal thermogravimetry, differential scanning calorimetry, and in situ X-ray diffraction. Based on the obtained data, multiple heating rate methods were used to calculate the reaction mechanism functions and kinetic parameters at each stage as well as the corresponding activation energy and pre-exponential factor. Results showed that four chemical reactions occurred successively during the calcination process of the raw materials with each corresponding to a different kinetic function, pre-exponential factor, and activation energy. Comparing the calcination characteristics under different oxygen concentrations showed that the activation energy was the smallest when the oxygen concentration was 60%.

3.
J Chem Phys ; 160(4)2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38294312

RESUMEN

We investigate the growth of crystals in Zr50Ti50 melts by classical molecular-dynamics simulations with an embedded atom method and a Stillinger-Weber potential model. Both models display fast solidification rates that can be captured by the transition state theory or the Ginzburg-Landau theory at small undercoolings. Fast crystal-growth rates are found to be affected by the pre-existing ordering in liquids, such as the body-centered cubic-like and icosahedral-like structures. The interface-induced ordering unveiled by the crystal-freezing method can explain the rate difference between these two models. However, these orderings fail to rationalize the temperature evolution of the growth rate at deep undercoolings. We correlate the growth kinetics with the detailed dynamical processes in liquids, finding the decoupling of hierarchic relaxation processes when collective motion emerges in supercooled liquids. We find that the growth kinetics is nondiffusive, but with a lower activation barrier corresponding to the structural relaxation or the cage-relative motion in ZrTi melts. These results explore a new relaxation mechanism for the fast growth rate in deeply undercooled liquids.

4.
Adv Mater ; 35(40): e2304490, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37562376

RESUMEN

The prevalence of wide-bandgap (WBG) semiconductors allows modern electronic devices to operate at much higher frequencies. However, development of soft magnetic materials with high-frequency properties matching the WBG-based devices remains challenging. Here, a promising nanocrystalline-amorphous composite alloy with a normal composition Fe75.5 Co0.5 Mo0.5 Cu1 Nb1.5 Si13 B8 in atomic percent is reported, which is producible under industrial conditions, and which shows an exceptionally high permeability at high frequencies up to 36 000 at 100 kHz, an increase of 44% compared with commercial FeSiBCuNb nanocrystalline alloy (25 000 ± 2000 at 100 kHz), outperforming all existing nanocrystalline alloy systems and commercial soft magnetic materials. The alloy is obtained by a unique magnetic-heterogeneous nanocrystallization mechanism in an iron-based amorphous alloy, which is different from the traditional strategy of nanocrystallization by doping nonmagnetic elements (e.g., Cu and Nb). The induced magnetic inhomogeneity by adding Co atoms locally promotes the formation of highly ordered structures acting as the nuclei of nanocrystals, and Mo atoms agglomerate around the interfaces of the nanocrystals, inhibiting nanocrystal growth, resulting in an ultrafine nanocrystalline-amorphous dual-phase structure in the alloy. The exceptional soft magnetic properties are shown to be closely related to the low magnetic anisotropy and the unique spin rotation mechanism under alternating magnetic fields.

5.
J Sep Sci ; 46(8): e2200984, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36795010

RESUMEN

Phorbol is a tetracyclic diterpenoid found in Euphorbia tirucalli, Croton tiglium, and Rehmannia glutinosa, and is nuclear of various phorbol esters. The rapid obtaining of phorbol with high purity highly contributes to its application, such as synthesizing phorbol esters with designable side chains and particular therapeutic efficacy. This study introduced a biphasic alcoholysis method for obtaining phorbol from croton oil by using polarity imparity organic solvents in both phases and established a high-speed countercurrent chromatography method for simultaneous separation and purification of phorbol. The optimized operation conditions of biphasic alcoholysis were a reaction time of 91 min, a temperature of 14°C, and a croton oil-methanol ratio of 1:30 (g:ml). The phorbol during the biphasic alcoholysis was 3.2-fold higher in content than that obtained in conventional monophasic alcoholysis. The optimized high-speed countercurrent chromatography method was using the ethyl acetate/n-butyl alcohol/water at 4.7:0.3:5 (v:v:v) with Na2 SO4 at 0.36 g/10 ml as the solvent system, using the mobile phase flow rate of 2 ml/min, the revolution of 800 r/min, under which the retention of the stationary phase was achieved at 72.83%. The crystallized phorbol following high-speed countercurrent chromatography was obtained as high purity of 94%.


Asunto(s)
Distribución en Contracorriente , Forboles , Distribución en Contracorriente/métodos , Aceite de Crotón , Solventes/química , Extractos Vegetales/química , Ésteres del Forbol , Cromatografía Líquida de Alta Presión
6.
Int J Biol Macromol ; 230: 123238, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36641015

RESUMEN

A high-strength aerogel with a 3D hierarchically macro-meso-microporous structure (HPS-aerogel) was designed based on biological macromolecules of chitin and chitosan. The macropores can be created within HPS-aerogel after CaCO3 removal, and meso-micropores resulting from water sublimation during freeze-drying. The macro-meso-microporous structure endowed HPS-aerogel with high porosity, good mechanical properties, and excellent compression strength (1472 kPa at strain of 80 %). The HPS-aerogel exposed many adsorption sites and was used as an adsorbent to simultaneously remove Cu(II) and Congo red (CR) from water for the first time. The adsorption capability for Cu(II) and CR was 59.21 mg/g and 2074 mg/g at 303 K, respectively, and the adsorption processes matched Pseudo-second-order and Langmuir models with spontaneous and endothermic nature. Additionally, HPS-aerogel showed good anti-interference ability for coexisting pollutant. Importantly, HPS-aerogel exhibited an effective fixed-bed column adsorption performance for dynamic Cu(II) and CR with superior reusability and stability. Furthermore, HPS-aerogel showed outstanding adsorption efficiencies for Cu(II) and CR in real samples. The main adsorption mechanism for Cu(II) was attributed to the electrostatic attraction and chelation, and which was electrostatic attraction, Schiff base, and hydrogen bonding for CR. Therefore, HPS-aerogel should to be a promising adsorbent for removing both heavy-metal ions and dyes from wastewater.


Asunto(s)
Quitosano , Metales Pesados , Contaminantes Químicos del Agua , Quitosano/química , Quitina , Rojo Congo , Adsorción , Contaminantes Químicos del Agua/química , Agua/química , Iones , Cinética
7.
Phys Rev Lett ; 129(21): 215501, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36461957

RESUMEN

Collective motion over increasing length scales is a signature of the vitrification process of liquids. We demonstrate how distinct static and dynamic length scales govern the dynamics of vitrifying films. In contrast to a monotonically growing static correlation length, the dynamical correlation length that measures the extent of surface-dynamics acceleration into the bulk displays a striking nonmonotonic temperature evolution that is robust also against changes in detailed interatomic interaction. This nonmonotonic change defines a crossover temperature T_{*} that is distinct from the critical temperature T_{c} of mode-coupling theory. We connect this nonmonotonic change to a morphological change of cooperative rearrangement regions of fast particles, and to the point where the decoupling of fast-particle motion from the bulk relaxation is most sensitive to fluctuations. We propose a rigorous definition of this new crossover temperature T_{*} within a recent extension of mode-coupling theory, the stochastic ß-relaxation theory.

8.
Molecules ; 27(21)2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36364136

RESUMEN

In order to improve the mechanical strength and imprinting efficiency, a novel bovine serum albumin (BSA) molecularly imprinted poly(ionic liquid)/calcium alginate composite cryogel membrane (MICM) was prepared. The results of the tensile test indicated that the MICM had excellent mechanical strength which could reach up to 90.00 KPa, 30.30 times higher than the poly (ionic liquid) membrane without calcium alginate; the elongation of it could reach up to 93.70%, 8.28 times higher than the poly (ionic liquid) membrane without calcium alginate. The MICM had a very high welling ratio of 1026.56% and macropore porosity of 62.29%, which can provide effective mass transport of proteins. More remarkably, it had a very high adsorption capacity of 485.87 mg g-1 at 20 °C and 0.66 mg mL-1 of the initial concentration of BSA. Moreover, MICM also had good selective and competitive recognition toward BSA, exhibiting potential utility in protein separation. This work can provide a potential method to prepare the protein-imprinted cryogel membrane with both high mechanical strength and imprinting efficiency.


Asunto(s)
Líquidos Iónicos , Impresión Molecular , Criogeles , Albúmina Sérica Bovina , Alginatos , Impresión Molecular/métodos , Adsorción
9.
Phys Rev E ; 106(1-1): 014607, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35974506

RESUMEN

We report computer simulations on the shear deformation of CuZr metallic glasses at zero and room temperatures. Shear bands emerge in athermal alloys at strain γ_{c}, with a finite-size effect found. The correlation of nonaffine displacement exhibits an exponential decay even after yielding in thermal alloys, but transits to a power law at γ>γ_{c} in athermal ones. The algebraic exponent is around -1 for the decay inside shear bands, consistent with the theoretical prediction in random elastic media. We quantify the anisotropic correlation with harmonic projection, finding the spectrum is weak in the exponential-decay regime, while it displays a strong polar and quadrupolar symmetry in the power-law regime. The nonvanishing quadrupolar symmetry at long distance signifies the nonlocality of plastic correlation in the athermal alloys. In contrast, the plastic correlation was found to be isotropic and localized at the yielding in the thermal alloys without shear bands.

10.
J Chem Phys ; 157(3): 034701, 2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35868946

RESUMEN

Surface induces many fascinating physical phenomena, such as dynamic acceleration, surface anchoring, and orientational wetting, and, thus, is of great interest to study. Here, we report classic molecular dynamics simulations on the free-standing surface of imidazolium-based ionic liquids (ILs) [C4mim][PF6] and [C10mim][PF6]. On [C10mim][PF6] surface, a significant orientational wetting is observed, with the wetting strength showing a diverging tendency. Depth of the wetting was captured from the density and orientational order profile by a static length, which remarkably increases below the temperature Tstat upon cooling down. The dynamical correlation length that measures the distance of surface-dynamics acceleration into the bulk was characterized via the spatial-dependent mobility. The translational correlation exhibits a similar drastic increment at Tstat, while the rotational correlation drastically increases at a lower temperature Trot. We connect these results to the dynamics in bulk liquids, by finding Tstat and Trot that correspond to the onset temperatures where the liquids become cooperative for translational and rotational relaxation, respectively. This signifies the importance of collective dynamics in the bulk on the orientational wetting and surface dynamics in the ILs.

12.
ACS Nano ; 16(1): 1511-1522, 2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-34908409

RESUMEN

Numerous emerging applications in modern society require humidity sensors that are not only sensitive and specific but also durable and intelligent. However, conventional humidity sensors do not have all of these simultaneously because they require very different or even contradictory design principles. Here, inspired by camel noses, we develop a porous zwitterionic capacitive humidity sensor. Relying on the synergistic effect of a porous structure and good chemical and thermal stabilities of hygroscopic zwitterions, this sensor simultaneously exhibits high sensitivity, discriminability, excellent durability, and, in particular, the highest respond speed among reported capacitive humidity sensors, with demonstrated applications in the fast discrimination between fresh, stale, and dry leaves, high-resolution touchless human-machine interactive input devices, and the real-time monitoring humidity level of a hot industrial exhaust. More importantly, this sensor exhibits typical synapse behaviors such as paired-pulse facilitation due to the strong binding interactions between water and zwitterions. This leads to learning and forgetting features with a tunable memory, thus giving the sensor artificial intelligence and enabling the location of water sources. This work offers a general design principle expected to be applied to develop other high-performance biochemical sensors and the next-generation intelligent sensors with much broader applications.


Asunto(s)
Camelus , Agua , Animales , Humanos , Humedad , Inteligencia Artificial , Porosidad
13.
Int J Mol Sci ; 24(1)2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36614127

RESUMEN

A novel adsorbent of N-doped carbonized microspheres were developed from chitin (N-doped CM-chitin) for adsorption of Congo red (CR). The N-doped CM-chitin showed spherical shape and consisted of carbon nanofibers with 3D hierarchical architecture. There were many micro/nano-pores existing in N-doped CM-chitin with high surface area (455.703 m2 g-1). The N element was uniformly distributed on the carbon nanofibers and formed with oxidize-N graphitic-N, pyrrolic-N, and pyridinic-N. The N-doped CM-chitin showed excellent adsorption capability for CR and the maximum adsorption amount was approximate 954.47 mg g-1. The π-π/n-π interaction, hydrogen-bond interactions, and pore filling adsorption might be the adsorption mechanisms. The adsorption of N-doped CM-chitin was considered as a spontaneous endothermic adsorption process, and which well conformed to the pseudo-second-order kinetic and Langmuir isotherm model. The N-doped CM-chitin exhibited an effective adsorption performance for dynamic CR water with good reusability. Therefore, this work provides new insights into the fabrication of a novel N-doped adsorbent from low-cost and waste biomasses.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Rojo Congo/química , Adsorción , Porosidad , Microesferas , Contaminantes Químicos del Agua/química , Quitina , Carbono , Agua , Cinética , Concentración de Iones de Hidrógeno
14.
Int J Biol Macromol ; 193(Pt A): 127-136, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34699889

RESUMEN

Traditional bioactive substances are often limited in practical application due to their poor stability and low solubility. Therefore, it is imperative to develop biocompatible high loading microgel carriers. In this study, a novel type of casein-porous starch microgel was prepared under ultra-high-pressure homogenization, by using porous starch with the honeycomb three-dimensional network porous structure. Molecular interaction force analysis and thermodynamic analysis showed that electrostatic interaction played a major role in the formation of microgels. Circular dichroism and Fourier transform infrared spectroscopy showed that homogenization and pH were the main factors, which affected the formation and structural stability of microgels. Compared with casein-glutinous rice starch microgels, the encapsulation efficiency and loading capacity of phycocyanin in casein-porous starch microgels were increased by 77.27% and 135.10%, respectively. Thus, casein-porous starch microgels could not only achieve a sustained release effect, but also effectively transport phycocyanin to the gastrointestinal tract of zebrafish, while achieving good fluorescence imaging in vivo. Ultimately, the prepared casein-porous starch microgels could enrich the nanocarriers material, and contribute to the research of safe and effective fluorescent imaging materials.


Asunto(s)
Caseínas/química , Microgeles/química , Ficocianina/química , Almidón/química , Animales , Porosidad , Solubilidad , Pez Cebra
15.
J Chem Phys ; 154(19): 194503, 2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-34240901

RESUMEN

Crystal growth of the intermetallic alloy, Ni50Al50, is investigated by molecular dynamics simulations with two different interatomic potentials. The calculated growth rate can be captured by the Wilson-Frenkel or Broughton-Gilmer-Jackson model at small undercoolings but deviates from the theory at deep undercoolings. Failure of the theory is found to be correlated with the dynamic processes that emerged at the interface, but not apparently with the static interface structure. The chemical segregation of Ni and Al atoms occurs before the geometrical ordering upon crystallization at small undercoolings. In contrast, the geometrical ordering precedes the chemical one at deep undercoolings. These two ordering processes show a collapsed time evolution at the crossover temperature consistent with the onset of the theoretical deviation. We rationalize the delayed chemical segregation behavior by the collective atomic motion, which is characterized by the super-Arrhenius transition of the temperature-dependent diffusivity and structural relaxation time at the crossover point.

16.
ACS Appl Mater Interfaces ; 13(24): 29130-29136, 2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34126739

RESUMEN

The natural-product-based low-molecular-weight supramolecular hydrogels (LMWSHs) induced by heating are rarely reported. In this work, a simple salt of oleanolic acid (OA) and choline ([choline][OA]) was used as the natural product hydrogelator (NPHG) to form LMWSHs. Unlike common sol-gel transitions, the OA-based LMWSH displayed a unique property with which the system could undergo a phase transition from the sol state to the gel state upon heating. Moreover, the phase separation was observed in sol and gel states when the temperature was elevated with nonreversible transparent-turbid transitions. LMWSHs showed good stability and injectability and the potential to be a drug delivery vehicle for sustained release of drugs. In this regard, this work provided a facile approach to designing an OA-based NPHG for preparing heat-induced LMWSHs.

17.
Phys Chem Chem Phys ; 23(11): 6496-6508, 2021 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-33688864

RESUMEN

Molecular dynamics simulations were performed on a 1-dodecyl-3-methylimidazolium hexafluorophosphate ([C12mim][PF6]) ionic liquid crystal (ILC) with the application of an oscillatory shear. We found that the oscillatory shear can both accelerate and suppress mesophase formation depending on shear amplitude. A small amplitude shear can speed up the mesophase transition dynamics and result in a more ordered mesomorphic structure than that without shear, i.e., an effect of accelerated aging. The mesophase is destabilized when the shear amplitude is large enough, resulting in a smectic A (SmA) to liquid or a smectic B (SmB) to SmA transition, with the mesophase behaviour summarized in an out-of-equilibrium phase diagram. Inside the layer plane a medium-range hexatic order was observed, with the correlation length extending to several nanometres in the shear-induced SmA phase. We rationalize the nonequilibrium mesophase behaviour from the rheology of isotropic liquids, finding a temperature-independent critical relaxation time for the mesophase transition in the translational or rotational dynamics. This finding can be used to predict the mesophase behaviour in the sheared ILCs from the rheology of isotropic liquids.

18.
Food Chem ; 348: 129126, 2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-33515947

RESUMEN

In this study, surface imprinting, magnetic separation, and fluorescent detection were integrated to develop a dual-recognition sensor (MF-MIPs), which was used for highly selective and sensitive detection of 4-nitrophenol (4-NP) in food samples. Silane-functionalized carbon dots (Si-CDs) participated in the imprinting process and were uniformly distributed into the MIPs layers. MF-MIPs sensor exhibited a high fluorescence response and selectivity based on the dual-recognition mechanism of imprinting recognition and fluorescence identification. The relative fluorescence intensity of MF-MIPs sensor presented a good linear relationship in the range of 0.08-10 µmol·L-1 with a low limit of detection (23.45 nmol·L1) for 4NP. MF-MIPs sensor showed high anti-interference, as well as excellent stability and reusability. The 4-NP recovery from spiked food samples ranged from 93.20 to 102.15%, and the relative standard deviation was lower than 5.0%. Therefore, MF-MIPs sensor may be a promising method for 4-NP detection in food samples.


Asunto(s)
Análisis de los Alimentos/métodos , Magnetismo , Impresión Molecular , Nitrofenoles/análisis , Carbono/química , Límite de Detección , Polímeros/química , Puntos Cuánticos/química , Reproducibilidad de los Resultados , Silanos/química , Espectrometría de Fluorescencia
19.
Pediatr Dent ; 42(4): 315-320, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32847672

RESUMEN

Purpose: The purpose of this study was to characterize the facial morphology of Chinese children with hypohidrotic ectodermal dysplasia (HED) and quantify facial changes after prosthetic treatment. Methods: 3-D facial images of 12 HED children were taken and their facial morphology was compared against 28 healthy controls. Facial changes due to denture placement were also quantified. Group differences were quantified and visualized by superimposing the average faces with robust Procrustes superimposition. Partial least square regression was used to investigate the effects of group membership (HED or controls, pre- and posttreatment) on facial morphology. Results: HED patients had a more prominent forehead, depressed nasal region, depressed zygomatic zone, flat cheeks, and protuberant lips and chin compared with controls. The strongest differences were localized in the middle and lower face, especially in the cheeks and zygomatic and chin regions (P<0.05). Pre- and post-treatment comparisons showed the chin retruded (P<0.05). Statistical facial differences between the posttreatment patients and the controls were localized in the perinasal area and submental region (P<0.05). Conclusions: The facial morphology of Chinese children with hypohidrotic ectodermal dysplasia differs significantly from healthy children, creating a more concave facial profile. Posttreatment facial changes provide a better understanding of dentures' role in improving facial appearance.


Asunto(s)
Displasia Ectodermal Anhidrótica Tipo 1 , Displasia Ectodérmica , Niño , Dentaduras , Humanos , Imagenología Tridimensional
20.
Nanoscale ; 12(11): 6529-6536, 2020 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-32159564

RESUMEN

Multiple emissions of blue, green and red from a molecular imprinting sensor rationally constructed, were used for the fluorescence colorimetric visualization of a fluorescent analyte of folic acid, using a flexible post-imprinting mixing strategy. That is, two kinds of folic acid-templated molecularly imprinted polymers (MIPs) were firstly synthesized by encapsulating green and red fluorescent quantum dots (g-QDs and r-QDs) individually on SiO2 cores, and they were then mixed at an appropriate ratio, resulting in a triple emission MIPs sensor. Upon folic acid recognition, the inherent blue fluorescence of folic acid was intensified, and the green and red fluorescence of the sensor QDs were gradually quenched. The quenching rate difference between g-QDs and r-QDs was greatly enhanced and used to obtain a wider-range and profuse fluorescence color evolution, by investigating the influences of the QDs modifier, eluent and imprinting layer thickness in detail. Under optimal conditions, the ratiometric intensity change of the three color emissions varied in a logistic function within 0.01-50 ppm of folic acid, and the corresponding fluorescence colors shifted from yellow to orange to red to purple and finally to blue. This excellent visualization capability of the MIPs sensor contributed to the accurate naked-eye detection of folic acid concentration using a portable ultraviolet lamp. Moreover, the MIPs sensor succeeded in determining folic acid in complicated food and serum samples, providing comparable results with the PRC standard method and satisfactory recoveries of 99.5-108.0%. The merits, including construction simplicity, high sensitivity and selectivity, and result visualization, enable such a multiple emission MIPs sensing strategy to be potentially applicable for visual identification and determination of various analytes in more fields.


Asunto(s)
Ácido Fólico/análisis , Impresión Molecular , Puntos Cuánticos/química , Dióxido de Silicio/química , Límite de Detección , Espectrometría de Fluorescencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...