Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 331
Filtrar
1.
Int J Biol Macromol ; 281(Pt 2): 136215, 2024 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-39378917

RESUMEN

The distinctive composition and functions of osteochondral structures result in constrained regeneration. Insufficient healing processes may precipitate the emergence of tissue growth disorders or excessive subchondral bone formation, which can culminate in the deterioration and failure of osteochondral tissue repair. To overcome these limitations, materials designed for osteochondral repair must provide region-specific modulation of the microenvironment and mechanical compatibility. To address these challenges, we propose a method to create continuous hydrogels with distinct structural and functional properties by a precise cross-linking method. We have developed an innovative polyurethane enriched with dimethylglyoxime, facilitating the coordinated loading and precise release of Zn2+. This strategy enables the meticulous control of alginate cross-linking, resulting in an elastic gradient hydrogel that closely resembles the osteochondral interface. The SeSe within the hydrogel effectively modulates the inflammatory microenvironment and fosters the M2 polarization of macrophages. The hydrogel's lower layer is designed to rapidly release Zn2+, thereby enhancing bone regeneration. The upper layer is intended to prevent bone overgrowth and stimulate chondrogenic differentiation. This dual-layer strategy allows targeted stimuli to each region, promoting the seamless integration of neoosteochondral tissue. Our study demonstrates the potential of this stratified hydrogel in achieving uniform and smooth osteochondral tissue regeneration.

2.
Biomaterials ; 314: 122875, 2024 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-39454507

RESUMEN

The inflammatory microenvironment and inferior chondrogenesis are major symptoms after cartilage defect. Although various modifications strategies associated with hydrogels exhibit remarkable capacity of pro-cartilage regeneration, the adverse effect by prolonging inflammation is still formidable to hamper potential biomedical applications of different hydrogel implants. Herein, inspired by the repair microenvironment of articular cartilage defects, an injectable, immunomodulatory, and chondrogenic L-MNS-CMDA hydrogel is prepared through grafting vinyl and catechol groups to chitosan macromolecules using amide reaction, then further loading MnO2 nanosheets (MNS). The double crosslinking of photopolymerization and catechol oxidative polymerization endows L-MNS-CMDA hydrogel with preferable mechanical property, affording a suitable mechanical support for cartilage defect repair. Additionally, the robust tissue adhesion capability stemming from catechol groups guarantees the long-term retention of the hydrogel in the defect site. Meanwhile, L-MNS-CMDA hydrogel decomposes exogenous and intracellular H2O2 into O2 and H2O, to effectively alleviate cellular oxidative stress caused by long-term hypoxia. Under the synergies of catechol groups and MNS, L-MNS-CMDA hydrogel not only inhibits macrophages polarizing into M1 phenotype, but encourages them turn into M2 phenotype, thereby, reconstructing an immunization friendly microenvironment to ultimately enhance cartilage regeneration. Predictably, the hydrogel markedly induces rat bone marrow mesenchymal stem cells differentiating into chondrocytes by expressing abundant glycosaminoglycan and type II collagen. A cartilage defect model of rat knee joint indicates that L-MNS-CMDA hydrogel visually regulate the early inflammatory response of post-implantation, and facilitate cartilage regeneration and recovery of joint function after 12 weeks of post-implantation. All in all, this multifunctional L-MNS-CMDA hydrogel exhibits superior immunomodulatory and chondrogenic properties, holding immense clinical potential in the treatment of cartilage defects.

3.
Cell Transplant ; 33: 9636897241291278, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39471108

RESUMEN

Autologous nerve transplantation (ANT) remains the gold standard for treating nerve defects. However, its efficacy in nerve repair still requires improvement. Mitochondrial dysfunction resulting from nerve injury may be a significant factor limiting nerve function restoration. This study investigated the impact of supplementing exogenous mitochondria (EM) in ANT and explored its effect on the efficacy of ANT in nerve repair. SD rats were used to prepare a model of a 10 mm sciatic nerve defect repaired by ANT (Auto group) and a model of ANT supplemented with EM (Mito group). At 12 weeks post-operation, functional, neurophysiological, and histological evaluations of the target organ revealed that the Mito group exhibited significantly better outcomes compared with the Auto group, with statistically significant differences (P < 0.05). In vitro experiments demonstrated that EM could be endocytosed by Schwann cells (SCs) and dorsal root ganglion neurons (DRGs) when co-cultured. After endocytosis by SCs, immunofluorescence staining of autophagy marker LC3II and mitochondrial marker Tomm20, as well as adenoviral fluorescence labeling of lysosomes and mitochondria, revealed that EM could promote autophagy in SCs. CCK8 and EDU assays also indicated that EM significantly promoted SCs proliferation and viability. After endocytosis by DRGs, EM could accelerate axonal growth rate. A sciatic nerve defect repair model prepared using Thy1-YFP-16 mice also revealed that EM could accelerate axonal growth in vivo, with statistically significant results (P < 0.05). This study suggests that EM enhances autophagy in SCs, promotes SCs proliferation and viability, and increases the axonal growth rate, thereby improving the efficacy of ANT. This research provides a novel therapeutic strategy for enhancing the efficacy of ANT in nerve repair.


Asunto(s)
Mitocondrias , Regeneración Nerviosa , Ratas Sprague-Dawley , Nervio Ciático , Animales , Mitocondrias/metabolismo , Ratas , Regeneración Nerviosa/fisiología , Nervio Ciático/lesiones , Trasplante Autólogo/métodos , Ratones , Células de Schwann/metabolismo , Masculino , Ganglios Espinales/metabolismo
4.
Biomater Transl ; 5(2): 157-174, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39351163

RESUMEN

Peripheral nerve injury poses a great threat to neurosurgery and limits the regenerative potential of sacral nerves in the neurogenic bladder. It remains unknown whether electrical stimulation can facilitate sacral nerve regeneration in addition to modulate bladder function. The objective of this study was to utilise electrical stimulation in sacra nerve crush injury with newly constructed electroconductive scaffold and explore the role of macrophages in electrical stimulation with crushed nerves. As a result, we generated a polypyrrole-coated polycaprolactone/silk fibroin scaffold through which we applied electrical stimulation. The electrical stimulation boosted nerve regeneration and polarised the macrophages towards the M2 phenotype. An in vitro test using bone marrow derived macrophages revealed that the pro-regenerative polarisation of M2 were significantly enhanced by electrical stimulation. Bioinformatics analysis showed that the expression of signal transducer and activator of transcriptions (STATs) was differentially regulated in a way that promoted M2-related genes expression. Our work indicated the feasibility of electricals stimulation used for sacral nerve regeneration and provided a firm demonstration of a pivotal role which macrophages played in electrical stimulation.

5.
PeerJ ; 12: e17970, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39221282

RESUMEN

Background: In order to improve perioperative pain and reduce the adverse outcome of severe pain in elderly hip fractures, anterior iliopsoas muscle space block (AIMSB) can be used clinically to reduce pain. The aim of the study is to investigate the 50% effective concentration (EC50) of ropivacaine for ultrasound-guided anterior iliopsoas space block in elderly with hip fracture. Methods: A total of 27 patients were enrolled with aged ≥65 years, American society of Anesthesiologists (ASA) physical status classification II-III and undergoing Total Hip Arthroplasty (THA). We measured the EC50 using Dixon's up-and-down method. Ultrasound-guided AIMSB was performed preoperatively with an initial concentration of 0.2% in the first patient. After a successful or unsuccessful postoperative analgesia, the concentration of local anesthetic was decreased or increased 0.05%, respectively in the next patient. The successful block effect was defined as no sensation to pinprick in the area with femoral nerve, obturator nerve, and lateral femoral cutaneous nerve in 30 min. Meanwhile, the EC50 of ropivacaine was determined by using linear model, linear-logarithmic model, probit regression model, and centered isotonic regression. Results: A total of 12 patients (48%) had a successful block. All patients with a successful block had a postoperative visual analog scale score of <4 in the 12 h. The estimated EC50 values in linear model, linear-logarithmic model, probit regression model, and centered isotonic regression (a nonparametric method) were 0.268%, 0.259%, 0.277%, and 0.289%. The residual standard error of linear model was the smallest (0.1245). Conclusion: The EC50 of ropivacaine in anterior iliopsoas space block under ultrasound guidance is 0.259-0.289%.


Asunto(s)
Anestésicos Locales , Fracturas de Cadera , Bloqueo Nervioso , Dolor Postoperatorio , Músculos Psoas , Ropivacaína , Ultrasonografía Intervencional , Humanos , Ropivacaína/administración & dosificación , Anciano , Anestésicos Locales/administración & dosificación , Masculino , Femenino , Bloqueo Nervioso/métodos , Dolor Postoperatorio/prevención & control , Dolor Postoperatorio/tratamiento farmacológico , Ultrasonografía Intervencional/métodos , Músculos Psoas/inervación , Músculos Psoas/diagnóstico por imagen , Fracturas de Cadera/cirugía , Anciano de 80 o más Años , Artroplastia de Reemplazo de Cadera/métodos , Relación Dosis-Respuesta a Droga
6.
Neural Regen Res ; 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39248166

RESUMEN

Previous research has demonstrated the feasibility of repairing nerve defects through acellular allogeneic nerve grafting with bone marrow mesenchymal stem cells. However, adult tissue-derived mesenchymal stem cells encounter various obstacles, including limited tissue sources, invasive acquisition methods, cellular heterogeneity, purification challenges, cellular senescence, and diminished pluripotency and proliferation over successive passages. In this study, we used induced pluripotent stem cell-derived mesenchymal stem cells, known for their self-renewal capacity, multilineage differentiation potential, and immunomodulatory characteristics. We used induced pluripotent stem cell-derived mesenchymal stem cells in conjunction with acellular nerve allografts to address a 10 mm-long defect in a rat model of sciatic nerve injury. Our findings reveal that induced pluripotent stem cell-derived mesenchymal stem cells exhibit survival for up to 17 days in a rat model of peripheral nerve injury with acellular nerve allograft transplantation. Furthermore, the combination of acellular nerve allograft and induced pluripotent stem cell-derived mesenchymal stem cells significantly accelerates the regeneration of injured axons and improves behavioral function recovery in rats. Additionally, our in vivo and in vitro experiments indicate that induced pluripotent stem cell-derived mesenchymal stem cells play a pivotal role in promoting neovascularization. Collectively, our results suggest the potential of acellular nerve allografts with induced pluripotent stem cell-derived mesenchymal stem cells to augment nerve regeneration in rats, offering promising therapeutic strategies for clinical translation.

7.
Carbohydr Polym ; 343: 122424, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39174114

RESUMEN

Articular cartilage and subchondral bone defects have always been problematic because the osteochondral tissue plays a crucial role in the movement of the body and does not recover spontaneously. Here, an injectable hydrogel composed of oxidized sodium alginate/gelatin/chondroitin sulfate (OSAGC) was designed for the minimally invasive treatment and promotion of osteochondral regeneration. The OSAGC hydrogel had a double network based on dynamic covalent bonds, demonstrating commendable injectability and self-healing properties. Chondroitin sulfate was organically bound to the hydrogel network, retaining its own activity and gradually releasing during the degradation process as well as improving mechanical properties. The compressive strength could be increased up to 3 MPa by regulating the concentration of chondroitin sulphate and the oxidation level, and this mechanical stimulation could help repair injured tissue. The OSAGC hydrogel had a favourable affinity to articular cartilage and was able to release active ingredients in a sustained manner over 3 months. The OSAGC showed no cytotoxic effects. Results from animal studies demonstrated its capacity to regenerate new bone tissue in four weeks and new cartilage tissue in twelve weeks. The OSAGC hydrogel represented a promising approach to simplify bone surgery and repair damaged osteochondral tissue.


Asunto(s)
Alginatos , Cartílago Articular , Sulfatos de Condroitina , Hidrogeles , Alginatos/química , Alginatos/farmacología , Animales , Sulfatos de Condroitina/química , Sulfatos de Condroitina/farmacología , Cartílago Articular/efectos de los fármacos , Hidrogeles/química , Hidrogeles/farmacología , Regeneración Ósea/efectos de los fármacos , Gelatina/química , Conejos , Fuerza Compresiva , Ingeniería de Tejidos/métodos , Inyecciones , Condrocitos/efectos de los fármacos , Condrocitos/citología , Andamios del Tejido/química , Regeneración/efectos de los fármacos
8.
Heliyon ; 10(14): e33781, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39113995

RESUMEN

This research examines the unique Chinese approaches to implementing the Early Childhood Curriculum (ECC) in Shenzhen and Hong Kong, drawing on School-based Curriculum Development (SBCD) studies. A total of 200 administrators and teachers were interviewed in total, and transcripts from those interviews were examined, cross-checked, and assessed using document analysis and classroom observation. Through interviews that have been conducted by administrators and teachers analyzed by document analysis and classroom observation, the influence of Chinese culture on ECC implementation is explored using the Cultural-Historical Activity Theory (CHAT). An exploratory, inferential, and descriptive statistical approach evaluates the sociocultural mechanism of ECC in Chinese society. The proposed framework utilizes K-Nearest Neighbor (KNN) regression analysis to illustrate how social development leads to cultural fusion and conflicts. The overall sociocultural framework promotes cultural growth and inheritance in China's early childhood education settings.

9.
Am J Hypertens ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136164

RESUMEN

BACKGROUND: Elevated soluble stimulating factor 2 (sST2) level is observed in cardiovascular diseases, such as heart failure and acute coronary syndrome, which reflects myocardial fibrosis and hypertrophy, indicating adverse clinical outcomes. However, the association between sST2 and hypertensive heart disease are less understood. This study aimed to determine the relationship of sST2 with left ventricular hypertrophy (LVH) and geometric remodeling in essential hypertension (EH). METHODS: We enrolled 483 patients (aged 18-80 years; 51.35% female). sST2 measurements and echocardiographic analyses were performed. RESULTS: Stepwise multiple linear regression analysis showed significant associations between sST2, left ventricular (LV) mass, and LV mass index. The prevalence of LVH and concentric hypertrophy (CH) increased with higher sST2 grade levels (p for trend<0.05). Logistic regression analysis suggested that the highest tertile of sST2 was significantly associated with increased LVH risk, compared with the lowest tertile (multivariate-adjusted odds ratio [OR] of highest group: 6.61; p<0.001). Similar results were observed in the left ventricular geometric remodeling; the highest tertile of sST2 was significantly associated with increased CH risk (multivariate-adjusted OR of highest group: 5.80; p<0.001). The receiver operating characteristic analysis results revealed that sST2 had potential predictive value for LVH (area under the curve [AUC]: 0.752, 95% confidence interval [CI]: 0.704-0.800) and CH (AUC: 0.750, 95% CI: 0.699-0.802) in patients with EH. CONCLUSIONS: High sST2 level is strongly related to LVH and CH in patients with EH and can be used as a biomarker for the diagnosis and risk assessment of hypertensive heart disease.

10.
Stem Cell Res Ther ; 15(1): 215, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39020413

RESUMEN

BACKGROUND: A favorable regenerative microenvironment is essential for peripheral nerve regeneration. Neural tissue-specific extracellular matrix (ECM) is a natural material that helps direct cell behavior and promote axon regeneration. Both bone marrow-derived mesenchymal stem cells (BMSCs) and adipose-derived mesenchymal stem cells (ADSCs) transplantation are effective in repairing peripheral nerve injury (PNI). However, there is no study that characterizes the in vivo microenvironmental characteristics of these two MSCs for the early repair of PNI when combined with neural tissue-derived ECM materials, i.e., acellular nerve allograft (ANA). METHODS: In order to investigate biological characteristics, molecular mechanisms of early stage, and effectiveness of ADSCs- or BMSCs-injected into ANA for repairing PNI in vivo, a rat 10 mm long sciatic nerve defect model was used. We isolated primary BMSCs and ADSCs from bone marrow and adipose tissue, respectively. First, to investigate the in vivo response characteristics and underlying molecular mechanisms of ANA combined with BMSCs or ADSCs, eighty-four rats were randomly divided into three groups: ANA group, ANA+BMSC group, and ANA+ADSC group. We performed flow cytometry, RT-PCR, and immunofluorescence staining up to 4 weeks postoperatively. To further elucidate the underlying molecular mechanisms, changes in long noncoding RNAs (lncRNAs), circular RNAs (circRNAs), microRNAs (miRNAs), and messenger RNAs (mRNAs) were systematically investigated using whole transcriptome sequencing. We then constructed protein-protein interaction networks to find 10 top ranked hub genes among differentially expressed mRNAs. Second, in order to explore the effectiveness of BMSCs and ADSCs on neural tissue-derived ECM materials for repairing PNI, sixty-eight rats were randomized into four groups: ANA group, ANA+BMSC group, ANA+ADSC group, and AUTO group. In the ANA+BMSC and ANA+ADSC groups, ADSCs/BMSCs were equally injected along the long axis of the 10-mm ANA. Then, we performed histological and functional assessments up to 12 weeks postoperatively. RESULTS: The results of flow cytometry and RT-PCR showed that ANA combined with BMSCs exhibited more significant immunomodulatory effects, as evidenced by the up-regulation of interleukin (IL)-10, down-regulation of IL-1ß and tumor necrosis factor-alpha (TNF-α) expression, promotion of M1-type macrophage polarization to M2-type, and a significant increase in the number of regulatory T cells (Tregs). ANA combined with ADSCs exhibited more pronounced features of pro-myelination and angiogenesis, as evidenced by the up-regulation of myelin-associated protein gene (MBP and MPZ) and angiogenesis-related factors (TGF-ß, VEGF). Moreover, differentially expressed genes from whole transcriptome sequencing results further indicated that ANA loaded with BMSCs exhibited notable immunomodulatory effects and ANA loaded with ADSCs was more associated with angiogenesis, axonal growth, and myelin formation. Notably, ANA infused with BMSCs or ADSCs enhanced peripheral nerve regeneration and motor function recovery with no statistically significant differences. CONCLUSIONS: This study revealed that both ANA combined with BMSCs and ADSCs enhance peripheral nerve regeneration and motor function recovery, but their biological characteristics (mainly including immunomodulatory effects, pro-vascular regenerative effects, and pro-myelin regenerative effects) and underlying molecular mechanisms in the process of repairing PNI in vivo are different, providing new insights into MSC therapy for peripheral nerve injury and its clinical translation.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Regeneración Nerviosa , Traumatismos de los Nervios Periféricos , Ratas Sprague-Dawley , Ingeniería de Tejidos , Animales , Ratas , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Ingeniería de Tejidos/métodos , Traumatismos de los Nervios Periféricos/terapia , Traumatismos de los Nervios Periféricos/metabolismo , Trasplante de Células Madre Mesenquimatosas/métodos , Nervio Ciático/lesiones , Nervio Ciático/metabolismo , Masculino , Tejido Adiposo/citología , Tejido Adiposo/metabolismo
11.
Biosens Bioelectron ; 263: 116578, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39038398

RESUMEN

Peripheral nerve injury (PNI) poses a significant public health issue, often leading to muscle atrophy and persistent neuropathic pain, which can drastically impact the quality of life for patients. Electrical stimulation represents an effective and non-pharmacological treatment to promote nerve regeneration. Yet, the postoperative application of electrical stimulation remains a challenge. Here, we propose a fully biodegradable, self-powered nerve guidance conduit (NGC) based on dissolvable zinc-molybdenum batteries. The conduit can offer topographic guidance for nerve regeneration and deliver sustained electrical cues between both ends of a transected nerve stump, extending beyond the surgical window. Schwann cell proliferation and adenosine triphosphate (ATP) production are enhanced by the introduction of the zinc-molybdenum batteries. In rodent models with 10-mm sciatic nerve damage, the device effectively enhances nerve regeneration and motor function recovery. This study offers innovative strategies for creating biodegradable and electroactive devices that hold important promise to optimize therapeutic outcomes for nerve regeneration.


Asunto(s)
Regeneración Nerviosa , Traumatismos de los Nervios Periféricos , Nervio Ciático , Zinc , Animales , Traumatismos de los Nervios Periféricos/terapia , Zinc/química , Nervio Ciático/fisiología , Nervio Ciático/lesiones , Ratas , Suministros de Energía Eléctrica , Molibdeno/química , Células de Schwann , Ratas Sprague-Dawley , Humanos , Regeneración Tisular Dirigida/instrumentación , Regeneración Tisular Dirigida/métodos , Técnicas Biosensibles , Implantes Absorbibles
12.
J Phys Chem Lett ; 15(28): 7335-7341, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-38986014

RESUMEN

Here, a barbituric acid derivative containing pyrene rings (DPPT) was successfully synthesized, and two types of crystals were prepared by using crystal engineering methods. Orange sheet-like crystals (DPPT-O, observed in visible light), prepared in a DCM/CH3OH solution, exhibited brittleness and weak fluorescence emission, along with sunlight-induced bending and fracturing. Red needle-like crystals (DPPT-R, also observed in visible light), synthesized in a DCM/CH3CN solution, demonstrated elastic properties, strong fluorescence emission, and excellent optical waveguide performance (with an optical loss coefficient of 0.23-0.30 dB mm-1). Single-crystal data analysis revealed that the stacking arrangement of molecules critically influenced the elasticity of the crystals, while the reaction cavity size regulated the photomechanical properties of the crystals. This study achieved effective control over sunlight responsiveness and flexible optical waveguide transmission for the first time, providing innovative insights for the application of homogeneous organic polycrystalline molecular crystals in this field.

13.
Nat Commun ; 15(1): 4721, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38830884

RESUMEN

Optoelectronic neural interfaces can leverage the photovoltaic effect to convert light into electrical current, inducing charge redistribution and enabling nerve stimulation. This method offers a non-genetic and remote approach for neuromodulation. Developing biodegradable and efficient optoelectronic neural interfaces is important for achieving transdermal stimulation while minimizing infection risks associated with device retrieval, thereby maximizing therapeutic outcomes. We propose a biodegradable, flexible, and miniaturized silicon-based neural interface capable of transdermal optoelectronic stimulation for neural modulation and nerve regeneration. Enhancing the device interface with thin-film molybdenum significantly improves the efficacy of neural stimulation. Our study demonstrates successful activation of the sciatic nerve in rodents and the facial nerve in rabbits. Moreover, transdermal optoelectronic stimulation accelerates the functional recovery of injured facial nerves.


Asunto(s)
Regeneración Nerviosa , Nervio Ciático , Animales , Conejos , Regeneración Nerviosa/fisiología , Regeneración Nerviosa/efectos de los fármacos , Nervio Ciático/fisiología , Nervio Facial/fisiología , Nervios Periféricos/fisiología , Masculino , Ratas , Silicio/química , Ratas Sprague-Dawley , Estimulación Eléctrica
14.
Stem Cell Res Ther ; 15(1): 158, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824568

RESUMEN

BACKGROUND: Nerve guide conduits are a promising strategy for reconstructing peripheral nerve defects. Improving the survival rate of seed cells in nerve conduits is still a challenge and microcarriers are an excellent three-dimensional (3D) culture scaffold. Here, we investigate the effect of the 3D culture of microcarriers on the biological characteristics of adipose mesenchymal stem cells (ADSCs) and to evaluate the efficacy of chitosan nerve conduits filled with microcarriers loaded with ADSCs in repairing nerve defects. METHODS: In vitro, we prepared porous chitosan microspheres by a modified emulsion cross-linking method for loading ADSCs and evaluated the growth status and function of ADSCs. In vivo, ADSCs-loaded microcarriers were injected into chitosan nerve conduits to repair a 12 mm sciatic nerve defect in rats. RESULTS: Compared to the conventional two-dimensional (2D) culture, the prepared microcarriers were more conducive to the proliferation, migration, and secretion of trophic factors of ADSCs. In addition, gait analysis, neuro-electrophysiology, and histological evaluation of nerves and muscles showed that the ADSC microcarrier-loaded nerve conduits were more effective in improving nerve regeneration. CONCLUSIONS: The ADSCs-loaded chitosan porous microcarrier prepared in this study has a high cell engraftment rate and good potential for peripheral nerve repair.


Asunto(s)
Tejido Adiposo , Quitosano , Células Madre Mesenquimatosas , Microesferas , Regeneración Nerviosa , Ratas Sprague-Dawley , Quitosano/química , Regeneración Nerviosa/fisiología , Animales , Ratas , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Tejido Adiposo/citología , Nervio Ciático/fisiología , Porosidad , Andamios del Tejido/química , Masculino , Trasplante de Células Madre Mesenquimatosas/métodos , Proliferación Celular , Células Cultivadas
15.
Am J Case Rep ; 25: e943604, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38833428

RESUMEN

BACKGROUND Persistent truncus arteriosus is a rare congenital cyanotic heart defect characterized by a single ventricular outflow tract. Without surgical intervention, it has a poor prognosis in infancy. Here, we report an adult female patient with uncorrected truncus arteriosus type I, who presented with acute-onset abdominal pain due to torsion of a small bowel gastrointestinal stromal tumor (GIST). CASE REPORT A 41-year-old woman came to our Emergency Department with acute-onset lower abdominal pain for 2 days. Congenital heart disease, truncus arteriosus, had been diagnosed at birth, and there had been no surgical intervention. Abdominal computed tomography revealed a 10×9×12-cm mixed-density mass in the pelvic capacity. Transthoracic echocardiography revealed a 33-mm ventricular septal defect. The ascending aorta originated mainly from the right ventricle, and the pulmonary artery originated from the beginning of the aorta (type I truncus arteriosus, according to Collett and Edwards classification). After a quick and detailed preoperative workup, the patient underwent tumor resection by open surgery with general anesthesia. CONCLUSIONS This is the first case to report emergency surgery for a patient with uncorrected persistent truncus arteriosus due to torsion of a small bowel GIST. A multidisciplinary team with deep understanding of the disease entity was crucial. By considering the fixed hemodynamic and respiratory physiology, overtreatment and unrealistic goals were avoided. Eventually, the patient was discharged after being hospitalized for 2 weeks.


Asunto(s)
Tumores del Estroma Gastrointestinal , Humanos , Femenino , Adulto , Tumores del Estroma Gastrointestinal/complicaciones , Tumores del Estroma Gastrointestinal/cirugía , Anomalía Torsional/cirugía , Anomalía Torsional/diagnóstico , Tronco Arterial Persistente/cirugía , Tronco Arterial Persistente/complicaciones , Intestino Delgado/anomalías
16.
J Orthop Translat ; 46: 18-32, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38774916

RESUMEN

Background: Osteochondral regeneration has long been recognized as a complex and challenging project in the field of tissue engineering. In particular, reconstructing the osteochondral interface is crucial for determining the effectiveness of the repair. Although several artificial layered or gradient scaffolds have been developed recently to simulate the natural interface, the functions of this unique structure have still not been fully replicated. In this paper, we utilized laser micro-patterning technology (LMPT) to modify the natural osteochondral "plugs" for use as grafts and aimed to directly apply the functional interface unit to repair osteochondral defects in a goat model. Methods: For in vitro evaluations, the optimal combination of LMPT parameters was confirmed through mechanical testing, finite element analysis, and comparing decellularization efficiency. The structural and biological properties of the laser micro-patterned osteochondral implants (LMP-OI) were verified by measuring the permeability of the interface and assessing the recellularization processes. In the goat model for osteochondral regeneration, a conical frustum-shaped defect was specifically created in the weight-bearing area of femoral condyles using a customized trephine with a variable diameter. This unreported defect shape enabled the implant to properly self-fix as expected. Results: The micro-patterning with the suitable pore density and morphology increased the permeability of the LMP-OIs, accelerated decellularization, maintained mechanical stability, and provided two relative independent microenvironments for subsequent recellularization. The LMP-OIs with goat's autologous bone marrow stromal cells in the cartilage layer have securely integrated into the osteochondral defects. At 6 and 12 months after implantation, both imaging and histological assessments showed a significant improvement in the healing of the cartilage and subchondral bone. Conclusion: With the natural interface unit and zonal recellularization, the LMP-OI is an ideal scaffold to repair osteochondral defects especially in large animals. The translational potential of this article: These findings suggest that such a modified xenogeneic osteochondral implant could potentially be explored in clinical translation for treatment of osteochondral injuries. Furthermore, trimming a conical frustum shape to the defect region, especially for large-sized defects, may be an effective way to achieve self-fixing for the implant.

17.
Bioact Mater ; 39: 1-13, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38783924

RESUMEN

Irregular articular cartilage injury is a common type of joint trauma, often resulting from intense impacts and other factors that lead to irregularly shaped wounds, the limited regenerative capacity of cartilage and the mismatched shape of the scaffods have contributed to unsatisfactory therapeutic outcomes. While injectable materials are a traditional solution to adapt to irregular cartilage defects, they have limitations, and injectable materials often lack the porous microstructures favorable for the rapid proliferation of cartilage cells. In this study, an injectable porous polyurethane scaffold named PU-BDO-Gelatin-Foam (PUBGF) was prepared. After injection into cartilage defects, PUBGF forms in situ at the site of the defect and exhibits a dynamic microstructure during the initial two weeks. This dynamic microstructure endows the scaffold with the ability to retain substances within its interior, thereby enhancing its capacity to promote chondrogenesis. Furthermore, the chondral repair efficacy of PUBGF was validated by directly injecting it into rat articular cartilage injury sites. The injectable PUBGF scaffold demonstrates a superior potential for promoting the repair of cartilage defects when compared to traditional porous polyurethane scaffolds. The substance retention ability of this injectable porous scaffold makes it a promising option for clinical applications.

19.
J Clin Hypertens (Greenwich) ; 26(4): 363-373, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38430459

RESUMEN

Left ventricular hypertrophy (LVH) is a hypertensive heart disease that significantly escalates the risk of clinical cardiovascular events. Its etiology potentially incorporates various clinical attributes such as gender, age, and renal function. From mechanistic perspective, the remodeling process of LVH can trigger increment in certain biomarkers, notably sST2 and NT-proBNP. This multicenter, retrospective study aimed to construct an LVH risk assessment model and identify the risk factors. A total of 417 patients with essential hypertension (EH), including 214 males and 203 females aged 31-80 years, were enrolled in this study; of these, 161 (38.6%) were diagnosed with LVH. Based on variables demonstrating significant disparities between the LVH and Non-LVH groups, three multivariate stepwise logistic regression models were constructed for risk assessment: the "Clinical characteristics" model, the "Biomarkers" model (each based on their respective variables), and the "Clinical characteristics + Biomarkers" model, which amalgamated both sets of variables. The results revealed that the "Clinical characteristics + Biomarkers" model surpassed the baseline models in performance (AUC values of the "Clinical characteristics + Biomarkers" model, the "Biomarkers" model, and the "Clinical characteristics" model were .83, .75, and .74, respectively; P < .0001 for both comparisons). The optimized model suggested that being female (OR: 4.26, P <.001), being overweight (OR: 1.88, p = .02) or obese (OR: 2.36, p = .02), duration of hypertension (OR: 1.04, P = .04), grade III hypertension (OR: 2.12, P < .001), and sST2 (log-transformed, OR: 1.14, P < .001) were risk factors, while eGFR acted as a protective factor (OR: .98, P = .01). These findings suggest that the integration of clinical characteristics and biomarkers can enhance the performance of LVH risk assessment.


Asunto(s)
Hipertensión , Hipertrofia Ventricular Izquierda , Femenino , Humanos , Masculino , Biomarcadores , Hipertensión Esencial/complicaciones , Hipertensión Esencial/epidemiología , Hipertensión/complicaciones , Hipertensión/diagnóstico , Hipertensión/epidemiología , Hipertrofia Ventricular Izquierda/diagnóstico , Hipertrofia Ventricular Izquierda/epidemiología , Hipertrofia Ventricular Izquierda/etiología , Nomogramas , Estudios Retrospectivos , Medición de Riesgo , Adulto , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años
20.
Plant Physiol Biochem ; 209: 108565, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38537380

RESUMEN

Numerous studies have clarified the impacts of magnesium (Mg) on leaf photosynthesis from the perspectives of protein synthesis, enzymes activation and carbohydrate partitioning. However, it still remains largely unknown how stomatal and mesophyll conductances (gs and gm, respectively) are regulated by Mg. In the present study, leaf gas exchanges, leaf hydraulic parameters, leaf structural traits and cell wall composition were examined in rice plants grown under high and low Mg treatments to elucidate the impacts of Mg on gs and gm. Our results showed that reduction of leaf photosynthesis under Mg deficiency was mainly caused by the decreased gm, followed by reduced leaf biochemical capacity and gs, and leaf outside-xylem hydraulic conductance (Kox) was the major factor restricting gs under Mg deficiency. Moreover, increased leaf hemicellulose, lignin and pectin contents and decreased cell wall effective porosity were observed in low Mg plants relative to high Mg plants. These results suggest that Kox and cell wall composition play important roles in regulating gs and gm, respectively, in rice plants under Mg shortages.


Asunto(s)
Deficiencia de Magnesio , Oryza , Oryza/metabolismo , Estomas de Plantas/fisiología , Agua/metabolismo , Hojas de la Planta/metabolismo , Fotosíntesis/fisiología , Células del Mesófilo/metabolismo , Dióxido de Carbono/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...