Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-37256806

RESUMEN

This article presents an event-triggered adaptive neural impedance control (ETANIC) scheme for robotic systems, where the combination of impedance control (IC) and event-triggered mechanism can significantly reduce the computational burden and the communication cost under the premise of ensuring the stability and tracking performances of the robotic systems. The IC is used to achieve the compliant behavior of the robotic systems in response to the environment. The uncertainties of the robotic systems are estimated by the radial basis function neural network (RBFNN), and the update laws for RBFNN are derived from the designed Lyapunov function. The stability of the whole closed-loop control system is analyzed by the Lyapunov theory, and the event-triggered conditions are designed to avoid the Zeno behavior. The numerical simulation and experimental tests demonstrate that the proposed ETANIC scheme can achieve better efficiency for controlling the robotic systems to perform the interaction tasks with the environment in comparison to the adaptive neural IC (ANIC).

2.
ISA Trans ; 129(Pt B): 361-369, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35190194

RESUMEN

This paper focuses on the impedance control for robotic manipulators with time-varying output constraints. High-order control barrier functions (HoCBFs) are firstly proposed for a nonlinear system with high relative-degree time-varying constraints. Then, the HoCBFs are introduced to impedance control for robotic manipulators, where the HoCBFs are employed to avoid the violation of time-varying output constraints in Cartesian space by quadratic program (QP), and the impedance control is designed to achieve compliance for human-robot interaction (HRI). In this way, the desired trajectory within the safety-critical region can be tracked without violating the output constraints due to the controller generated from QP, and the safe HRI can also be achieved because of the usage of impedance control method. Finally, simulation tests are conducted to verify the proposed control design methods.


Asunto(s)
Procedimientos Quirúrgicos Robotizados , Robótica , Simulación por Computador , Impedancia Eléctrica , Humanos
3.
Math Biosci Eng ; 19(1): 643-662, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34903006

RESUMEN

In this paper, a novel bio-inspired trajectory planning method is proposed for robotic systems based on an improved bacteria foraging optimization algorithm (IBFOA) and an improved intrinsic Tau jerk (named Tau-J*) guidance strategy. Besides, the adaptive factor and elite-preservation strategy are employed to facilitate the IBFOA, and an improved Tau-J* with higher-order of intrinsic guidance movement is used to avoid the nonzero initial and final jerk, so as to overcome the computational burden and unsmooth trajectory problems existing in the optimization algorithm and traditional interpolation algorithm. The IBFOA is utilized to determine a small set of optimal control points, and Tau-J* is then invoked to generate smooth trajectories between the control points. Finally, the results of simulation tests demonstrate the eminent stability, optimality, and rapidity capability of the proposed bio-inspired trajectory planning method.


Asunto(s)
Algoritmos , Biomimética , Modelos Teóricos , Robótica , Bacterias , Simulación por Computador
4.
ISA Trans ; 92: 166-179, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30837125

RESUMEN

In this paper, a robust adaptive motion/force control (RAMFC) scheme is presented for a crawler-type mobile manipulator (CTMM) with nonholonomic constraint. For the position tracking control design, an adaptive sliding mode tracking controller is proposed to deal with the unknown upper bounds of system parameter uncertainties and external disturbances. Based on the position tracking results, a robust control strategy is also developed for the nonholonomic constraint force of CTMM. According to the Lyapunov stability theory, the stability of the closed-loop control system, the uniformly ultimately boundedness of position tracking errors, and the boundedness of the force error and adaptive coefficient errors are all guaranteed by using the derived RAMFC scheme. Simulation and experimental tests on a CTMM with two-link manipulator demonstrate the effectiveness and robustness of the proposed control scheme.

5.
Comput Intell Neurosci ; 2015: 405890, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25705220

RESUMEN

Since real-world data sets usually contain large instances, it is meaningful to develop efficient and effective multiple instance learning (MIL) algorithm. As a learning paradigm, MIL is different from traditional supervised learning that handles the classification of bags comprising unlabeled instances. In this paper, a novel efficient method based on extreme learning machine (ELM) is proposed to address MIL problem. First, the most qualified instance is selected in each bag through a single hidden layer feedforward network (SLFN) whose input and output weights are both initialed randomly, and the single selected instance is used to represent every bag. Second, the modified ELM model is trained by using the selected instances to update the output weights. Experiments on several benchmark data sets and multiple instance regression data sets show that the ELM-MIL achieves good performance; moreover, it runs several times or even hundreds of times faster than other similar MIL algorithms.


Asunto(s)
Algoritmos , Inteligencia Artificial , Redes Neurales de la Computación , Interpretación de Imagen Asistida por Computador/métodos , Modelos Teóricos , Reconocimiento de Normas Patrones Automatizadas/métodos
6.
ISA Trans ; 53(4): 1035-43, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24917071

RESUMEN

In this paper, mobile manipulator is divided into two subsystems, that is, nonholonomic mobile platform subsystem and holonomic manipulator subsystem. First, the kinematic controller of the mobile platform is derived to obtain a desired velocity. Second, regarding the coupling between the two subsystems as disturbances, Lyapunov functions of the two subsystems are designed respectively. Third, a robust adaptive tracking controller is proposed to deal with the unknown upper bounds of parameter uncertainties and disturbances. According to the Lyapunov stability theory, the derived robust adaptive controller guarantees global stability of the closed-loop system, and the tracking errors and adaptive coefficient errors are all bounded. Finally, simulation results show that the proposed robust adaptive tracking controller for nonholonomic mobile manipulator is effective and has good tracking capacity.

7.
ISA Trans ; 50(4): 588-98, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21788017

RESUMEN

In this paper, an adaptive control approach based on the neural networks is presented to control a DC motor system with dead-zone characteristics (DZC), where two neural networks are proposed to formulate the traditional identification and control approaches. First, a Wiener-type neural network (WNN) is proposed to identify the motor DZC, which formulates the Wiener model with a linear dynamic block in cascade with a nonlinear static gain. Second, a feedforward neural network is proposed to formulate the traditional PID controller, termed as PID-type neural network (PIDNN), which is then used to control and compensate for the DZC. In this way, the DC motor system with DZC is identified by the WNN identifier, which provides model information to the PIDNN controller in order to make it adaptive. Back-propagation algorithms are used to train both neural networks. Also, stability and convergence analysis are conducted using the Lyapunov theorem. Finally, experiments on the DC motor system demonstrated accurate identification and good compensation for dead-zone with improved control performance over the conventional PID control.


Asunto(s)
Redes Neurales de la Computación , Algoritmos , Inteligencia Artificial , Industrias/instrumentación , Modelos Lineales , Dinámicas no Lineales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...