Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Hum Brain Mapp ; 45(7): e26695, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38727010

RESUMEN

Human infancy is marked by fastest postnatal brain structural changes. It also coincides with the onset of many neurodevelopmental disorders. Atlas-based automated structure labeling has been widely used for analyzing various neuroimaging data. However, the relatively large and nonlinear neuroanatomical differences between infant and adult brains can lead to significant offsets of the labeled structures in infant brains when adult brain atlas is used. Age-specific 1- and 2-year-old brain atlases covering all major gray and white matter (GM and WM) structures with diffusion tensor imaging (DTI) and structural MRI are critical for precision medicine for infant population yet have not been established. In this study, high-quality DTI and structural MRI data were obtained from 50 healthy children to build up three-dimensional age-specific 1- and 2-year-old brain templates and atlases. Age-specific templates include a single-subject template as well as two population-averaged templates from linear and nonlinear transformation, respectively. Each age-specific atlas consists of 124 comprehensively labeled major GM and WM structures, including 52 cerebral cortical, 10 deep GM, 40 WM, and 22 brainstem and cerebellar structures. When combined with appropriate registration methods, the established atlases can be used for highly accurate automatic labeling of any given infant brain MRI. We demonstrated that one can automatically and effectively delineate deep WM microstructural development from 3 to 38 months by using these age-specific atlases. These established 1- and 2-year-old infant brain DTI atlases can advance our understanding of typical brain development and serve as clinical anatomical references for brain disorders during infancy.


Asunto(s)
Atlas como Asunto , Encéfalo , Imagen de Difusión Tensora , Sustancia Gris , Sustancia Blanca , Humanos , Lactante , Preescolar , Masculino , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/anatomía & histología , Sustancia Blanca/crecimiento & desarrollo , Femenino , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/crecimiento & desarrollo , Sustancia Gris/anatomía & histología , Imagen de Difusión Tensora/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/crecimiento & desarrollo , Encéfalo/anatomía & histología , Procesamiento de Imagen Asistido por Computador/métodos
2.
Artículo en Inglés | MEDLINE | ID: mdl-38319760

RESUMEN

Unsupervised graph-structure learning (GSL) which aims to learn an effective graph structure applied to arbitrary downstream tasks by data itself without any labels' guidance, has recently received increasing attention in various real applications. Although several existing unsupervised GSL has achieved superior performance in different graph analytical tasks, how to utilize the popular graph masked autoencoder to sufficiently acquire effective supervision information from the data itself for improving the effectiveness of learned graph structure has been not effectively explored so far. To tackle the above issue, we present a multilevel contrastive graph masked autoencoder (MCGMAE) for unsupervised GSL. Specifically, we first introduce a graph masked autoencoder with the dual feature masking strategy to reconstruct the same input graph-structured data under the original structure generated by the data itself and learned graph-structure scenarios, respectively. And then, the inter-and intra-class contrastive loss is introduced to maximize the mutual information in feature and graph-structure reconstruction levels simultaneously. More importantly, the above inter-and intra-class contrastive loss is also applied to the graph encoder module for further strengthening their agreement at the feature-encoder level. In comparison to the existing unsupervised GSL, our proposed MCGMAE can effectively improve the training robustness of the unsupervised GSL via different-level supervision information from the data itself. Extensive experiments on three graph analytical tasks and eight datasets validate the effectiveness of the proposed MCGMAE.

3.
Artículo en Inglés | MEDLINE | ID: mdl-37289610

RESUMEN

Sparse additive machines (SAMs) have shown competitive performance on variable selection and classification in high-dimensional data due to their representation flexibility and interpretability. However, the existing methods often employ the unbounded or nonsmooth functions as the surrogates of 0-1 classification loss, which may encounter the degraded performance for data with outliers. To alleviate this problem, we propose a robust classification method, named SAM with the correntropy-induced loss (CSAM), by integrating the correntropy-induced loss (C-loss), the data-dependent hypothesis space, and the weighted lq,1 -norm regularizer ( q ≥ 1 ) into additive machines. In theory, the generalization error bound is estimated via a novel error decomposition and the concentration estimation techniques, which shows that the convergence rate O(n-1/4) can be achieved under proper parameter conditions. In addition, the theoretical guarantee on variable selection consistency is analyzed. Experimental evaluations on both synthetic and real-world datasets consistently validate the effectiveness and robustness of the proposed approach.

4.
Med Phys ; 50(7): 4325-4339, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36708251

RESUMEN

BACKGROUND: In the brain tumor magnetic resonance image (MRI) segmentation, although the 3D convolution networks (CNNs) has achieved state-of-the-art results, the class and hard-voxel imbalances in the 3D images have not been well addressed. Voxel independent losses are dependent on the setting of class weights for the class imbalance issue, and are hard to assign each class equally. Region-related losses cannot correctly focus on hard voxels dynamically and not be robust to misclassification of small structures. Meanwhile, repeatedly training on the additional hard samples augmented by existing methods would bring more class imbalance, overfitting and incorrect knowledge learning to the model. PURPOSE: A novel region-related loss with balanced dynamic weighting while alleviating the sensitivity to small structures is necessary. In addition, we need to increase the diversity of hard samples in the training to improve the performance of model. METHODS: The proposed Region-related Focal Loss (RFL) reshapes standard Dice Loss (DL) by up-weighting the loss assigned to hard-classified voxels. Compared to DL, RFL adaptively modulate its gradient with an invariant focalized point that voxels with lower-confidence than it would achieve a larger gradient, and higher-confidence voxels would get a smaller gradient. Meanwhile, RFL can adjust the parameters to set where and how much the network is focused. In addition, an Intra-classly Transformed Augmentation network (ITA-NET) is proposed to increase the diversity of hard samples, in which the 3D registration network and intra-class transfer layer are used to transform the shape and intensity respectively. A selective hard sample mining(SHSM) strategy is used to train the ITA-NET for avoiding excessive class imbalance. Source code (in Tensorflow) is available at: https://github.com/lb-whu/RFL_ITA. RESULTS: The experiments are carried out on public data set: Brain Tumor Segmentation Challenge 2020 (BratS2020). Experiments with BraTS2020 online validation set show that proposed methods achieve an average Dice scores of 0.905, 0.821, and 0.806 for whole tumor (WT), tumor core (TC) and enhancing tumor (ET), respectively. Compared with DL (baseline), the proposed RFL significantly improves the Dice scores by an average of 1%, and for the small region ET it can even increase by 3%. And the proposed method combined with ITA-NET improves the Dice scores of ET and TC by 5% and 3% respectively. CONCLUSIONS: The proposed RFL can converge with a invariant focalized point in the training of segmentation network, thus effectively alleviating the hard-voxel imbalance in brain tumor MRI segmentation. The negative region term of RFL can effectively reduce the sensitivity of the segmentation model to the misclassification of small structures. The proposed ITA-NET can increase the diversity of hard samples by transforming their shape and transfer their intra-class intensity, thereby effectively improving the robustness of the segmentation network to hard samples.


Asunto(s)
Neoplasias Encefálicas , Procesamiento de Imagen Asistido por Computador , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Imagenología Tridimensional/métodos
5.
IEEE Trans Neural Netw Learn Syst ; 34(10): 7541-7554, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35120009

RESUMEN

Recent weakly supervised semantic segmentation methods generate pseudolabels to recover the lost position information in weak labels for training the segmentation network. Unfortunately, those pseudolabels often contain mislabeled regions and inaccurate boundaries due to the incomplete recovery of position information. It turns out that the result of semantic segmentation becomes determinate to a certain degree. In this article, we decompose the position information into two components: high-level semantic information and low-level physical information, and develop a componentwise approach to recover each component independently. Specifically, we propose a simple yet effective pseudolabels updating mechanism to iteratively correct mislabeled regions inside objects to precisely refine high-level semantic information. To reconstruct low-level physical information, we utilize a customized superpixel-based random walk mechanism to trim the boundaries. Finally, we design a novel network architecture, namely, a dual-feedback network (DFN), to integrate the two mechanisms into a unified model. Experiments on benchmark datasets show that DFN outperforms the existing state-of-the-art methods in terms of intersection-over-union (mIoU).

6.
Artículo en Inglés | MEDLINE | ID: mdl-36107889

RESUMEN

Despite the great success of the existing work in fine-grained visual categorization (FGVC), there are still several unsolved challenges, e.g., poor interpretation and vagueness contribution. To circumvent this drawback, motivated by the hypersphere embedding method, we propose a discriminative suprasphere embedding (DSE) framework, which can provide intuitive geometric interpretation and effectively extract discriminative features. Specifically, DSE consists of three modules. The first module is a suprasphere embedding (SE) block, which learns discriminative information by emphasizing weight and phase. The second module is a phase activation map (PAM) used to analyze the contribution of local descriptors to the suprasphere feature representation, which uniformly highlights the object region and exhibits remarkable object localization capability. The last module is a class contribution map (CCM), which quantitatively analyzes the network classification decision and provides insight into the domain knowledge about classified objects. Comprehensive experiments on three benchmark datasets demonstrate the effectiveness of our proposed method in comparison with state-of-the-art methods.

7.
Artículo en Inglés | MEDLINE | ID: mdl-35507624

RESUMEN

Zero-shot learning (ZSL) tackles the unseen class recognition problem by transferring semantic knowledge from seen classes to unseen ones. Typically, to guarantee desirable knowledge transfer, a direct embedding is adopted for associating the visual and semantic domains in ZSL. However, most existing ZSL methods focus on learning the embedding from implicit global features or image regions to the semantic space. Thus, they fail to: 1) exploit the appearance relationship priors between various local regions in a single image, which corresponds to the semantic information and 2) learn cooperative global and local features jointly for discriminative feature representations. In this article, we propose the novel graph navigated dual attention network (GNDAN) for ZSL to address these drawbacks. GNDAN employs a region-guided attention network (RAN) and a region-guided graph attention network (RGAT) to jointly learn a discriminative local embedding and incorporate global context for exploiting explicit global embeddings under the guidance of a graph. Specifically, RAN uses soft spatial attention to discover discriminative regions for generating local embeddings. Meanwhile, RGAT employs an attribute-based attention to obtain attribute-based region features, where each attribute focuses on the most relevant image regions. Motivated by the graph neural network (GNN), which is beneficial for structural relationship representations, RGAT further leverages a graph attention network to exploit the relationships between the attribute-based region features for explicit global embedding representations. Based on the self-calibration mechanism, the joint visual embedding learned is matched with the semantic embedding to form the final prediction. Extensive experiments on three benchmark datasets demonstrate that the proposed GNDAN achieves superior performances to the state-of-the-art methods. Our code and trained models are available at https://github.com/shiming-chen/GNDAN.

8.
J Affect Disord ; 297: 1-7, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34656674

RESUMEN

BACKGROUND: Resting-state functional magnetic resonance imaging has been widely used for the assessment of brain functional network, yet with inconsistent results. The present study aimed to investigate intranetwork and internetwork connectivity differences between patients with major depressive disorder (MDD) and healthy controls at the integrity, network and edge levels of 8 well-defined resting state networks. METHODS: Thirty patients with MDD and sixty-three healthy control subjects were recruited in this study. RESULTS: Compared with healthy controls, patients with MDD showed increased node degree in the right amygdala and putamen, increased connectivity strength in the deep gray matter network (DGN) and increased functional connectivity in intranetwork and internetwork. Meanwhile, MDD showed decreased connectivity strength in visual network-DGN pair. LIMITATIONS: The sample size was small, and all patients in this study were of Asian ethnicity, especially Han individuals. CONCLUSIONS: These findings demonstrate that MDD cases and healthy controls may have divergent intranetwork and internetwork connectivity at an early stage without confounding influence of medication. These differences may underlie cognitive and behavioral alterations in patients with MDD. And these differences may help with the discrimination of patients and healthy people at an early stage of MDD. More studies in the future are warranted to assist in the diagnosis of this burdensome disease.


Asunto(s)
Trastorno Depresivo Mayor , Preparaciones Farmacéuticas , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Trastorno Depresivo Mayor/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética
9.
Med Phys ; 48(11): 6962-6975, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34494276

RESUMEN

PURPOSE: In neonatal brain magnetic resonance image (MRI) segmentation, the model we trained on the training set (source domain) often performs poorly in clinical practice (target domain). As the label of target-domain images is unavailable, this cross-domain segmentation needs unsupervised domain adaptation (UDA) to make the model adapt to the target domain. However, the shape and intensity distribution of neonatal brain MRI images across the domains are largely different from adults'. Current UDA methods aim to make synthesized images similar to the target domain as a whole. But it is impossible to synthesize images with intraclass similarity because of the regional misalignment caused by the cross-domain difference. This will result in generating intraclassly incorrect intensity information from target-domain images. To address this issue, we propose an IAS-NET (joint intraclassly adaptive generative adversarial network (GAN) (IA-NET) and segmentation) framework to bridge the gap between the two domains for intraclass alignment. METHODS: Our proposed IAS-NET is an elegant learning framework that transfers the appearance of images across the domains from both image and feature perspectives. It consists of the proposed IA-NET and a segmentation network (S-NET). The proposed IA-NET is a GAN-based adaptive network that contains one generator (including two encoders and one shared decoder) and four discriminators for cross-domain transfer. The two encoders are implemented to extract original image, mean, and variance features from source and target domains. The proposed local adaptive instance normalization algorithm is used to perform intraclass feature alignment to the target domain in the feature-map level. S-NET is a U-net structure network that is used to provide semantic constraint by a segmentation loss for the training of IA-NET. Meanwhile, it offers pseudo-label images for calculating intraclass features of the target domain. Source code (in Tensorflow) is available at https://github.com/lb-whu/RAS-NET/. RESULTS: Extensive experiments are carried out on two different data sets (NeoBrainS12 and dHCP), respectively. There exist great differences in the shape, size, and intensity distribution of magnetic resonance (MR) images in the two databases. Compared to baseline, we improve the average dice score of all tissues on NeoBrains12 by 6% through adaptive training with unlabeled dHCP images. Besides, we also conduct experiments on dHCP and improved the average dice score by 4%. The quantitative analysis of the mean and variance of the synthesized images shows that the synthesized image by the proposed is closer to the target domain both in the full brain or within each class than that of the compared methods. CONCLUSIONS: In this paper, the proposed IAS-NET can improve the performance of the S-NET effectively by its intraclass feature alignment in the target domain. Compared to the current UDA methods, the synthesized images by IAS-NET are more intraclassly similar to the target domain for neonatal brain MR images. Therefore, it achieves state-of-the-art results in the compared UDA models for the segmentation task.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Algoritmos , Encéfalo/diagnóstico por imagen , Espectroscopía de Resonancia Magnética
10.
Br J Radiol ; 94(1127): 20210259, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34464552

RESUMEN

OBJECTIVE: Patients with dilated cardiomyopathy (DCM) and severely reduced left ventricular ejection fractions (LVEFs) are at very high risks of experiencing adverse cardiac events. A machine learning (ML) method could enable more effective risk stratification for these high-risk patients by incorporating various types of data. The aim of this study was to build an ML model to predict adverse events including all-cause deaths and heart transplantation in DCM patients with severely impaired LV systolic function. METHODS: One hundred and eighteen patients with DCM and severely reduced LVEFs (<35%) were included. The baseline clinical characteristics, laboratory data, electrocardiographic, and cardiac magnetic resonance (CMR) features were collected. Various feature selection processes and classifiers were performed to select an ML model with the best performance. The predictive performance of tested ML models was evaluated using the area under the curve (AUC) of the receiver operating characteristic curve using 10-fold cross-validation. RESULTS: Twelve patients died, and 17 patients underwent heart transplantation during the median follow-up of 508 days. The ML model included systolic blood pressure, left ventricular end-systolic and end-diastolic volume indices, and late gadolinium enhancement (LGE) extents on CMR imaging, and a support vector machine was selected as a classifier. The model showed excellent performance in predicting adverse events in DCM patients with severely reduced LVEF (the AUC and accuracy values were 0.873 and 0.763, respectively). CONCLUSIONS: This ML technique could effectively predict adverse events in DCM patients with severely reduced LVEF. ADVANCES IN KNOWLEDGE: The ML method has superior ability in risk stratification in severe DCM patients.


Asunto(s)
Cardiomiopatía Dilatada/complicaciones , Cardiomiopatía Dilatada/mortalidad , Aprendizaje Automático , Imagen por Resonancia Magnética/métodos , Disfunción Ventricular Izquierda/complicaciones , Disfunción Ventricular Izquierda/mortalidad , Adulto , Cardiomiopatía Dilatada/diagnóstico por imagen , Electrocardiografía/métodos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Estudios Retrospectivos , Medición de Riesgo , Volumen Sistólico , Disfunción Ventricular Izquierda/diagnóstico por imagen
11.
Front Cardiovasc Med ; 8: 766423, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34977183

RESUMEN

Background: Late enhanced cardiac magnetic resonance (CMR) images of the left ventricular myocardium contain an enormous amount of information that could provide prognostic value beyond that of late gadolinium enhancements (LGEs). With computational postprocessing and analysis, the heterogeneities and variations of myocardial signal intensities can be interpreted and measured as texture features. This study aimed to evaluate the value of texture features extracted from late enhanced CMR images of the myocardium to predict adverse outcomes in patients with dilated cardiomyopathy (DCM) and severe systolic dysfunction. Methods: This single-center study retrospectively enrolled patients with DCM with severely reduced left ventricular ejection fractions (LVEFs < 35%). Texture features were extracted from enhanced late scanning images, and the presence and extent of LGEs were also measured. Patients were followed-up for clinical endpoints composed of all-cause deaths and cardiac transplantation. Cox proportional hazard regression and Kaplan-Meier analyses were used to evaluate the prognostic value of texture features and conventional CMR parameters with event-free survival. Results: A total of 114 patients (37 women, median age 47.5 years old) with severely impaired systolic function (median LVEF, 14.0%) were followed-up for a median of 504.5 days. Twenty-nine patients experienced endpoint events, 12 died, and 17 underwent cardiac transplantations. Three texture features from a gray-level co-occurrence matrix (GLCM) (GLCM_contrast, GLCM_difference average, and GLCM_difference entropy) showed good prognostic value for adverse events when analyzed using univariable Cox hazard ratio regression (p = 0.007, p = 0.011, and p = 0.007, retrospectively). When each of the three features was analyzed using a multivariable Cox regression model that included the clinical parameter (systolic blood pressure) and LGE extent, they were found to be independently associated with adverse outcomes. Conclusion: Texture features related LGE heterogeneities and variations (GLCM_contrast, GLCM_difference average, and GLCM_difference entropy) are novel markers for risk stratification toward adverse events in DCM patients with severe systolic dysfunction.

12.
IEEE Trans Neural Netw Learn Syst ; 32(3): 1204-1216, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32287021

RESUMEN

Low-rank Multiview Subspace Learning (LMvSL) has shown great potential in cross-view classification in recent years. Despite their empirical success, existing LMvSL-based methods are incapable of handling well view discrepancy and discriminancy simultaneously, which, thus, leads to performance degradation when there is a large discrepancy among multiview data. To circumvent this drawback, motivated by the block-diagonal representation learning, we propose structured low-rank matrix recovery (SLMR), a unique method of effectively removing view discrepancy and improving discriminancy through the recovery of the structured low-rank matrix. Furthermore, recent low-rank modeling provides a satisfactory solution to address the data contaminated by the predefined assumptions of noise distribution, such as Gaussian or Laplacian distribution. However, these models are not practical, since complicated noise in practice may violate those assumptions and the distribution is generally unknown in advance. To alleviate such a limitation, modal regression is elegantly incorporated into the framework of SLMR (termed MR-SLMR). Different from previous LMvSL-based methods, our MR-SLMR can handle any zero-mode noise variable that contains a wide range of noise, such as Gaussian noise, random noise, and outliers. The alternating direction method of multipliers (ADMM) framework and half-quadratic theory are used to optimize efficiently MR-SLMR. Experimental results on four public databases demonstrate the superiority of MR-SLMR and its robustness to complicated noise.

13.
Magn Reson Med ; 85(4): 1895-1908, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33058286

RESUMEN

PURPOSE: To investigate the neuroanatomical underpinning of healthy macaque brain cortical microstructure measured by diffusion kurtosis imaging (DKI), which characterizes non-Gaussian water diffusion. METHODS: High-resolution DKI was acquired from 6 postmortem macaque brains. Neurofilament density (ND) was quantified based on structure tensor from neurofilament histological images of a different macaque brain sample. After alignment of DKI-derived mean kurtosis (MK) maps to the histological images, MK and histology-based ND were measured at corresponding regions of interests characterized by distinguished cortical MK values in the prefrontal/precentral-postcentral and temporal cortices. Pearson correlation was performed to test significant correlation between these cortical MK and ND measurements. RESULTS: Heterogeneity of cortical MK across different cortical regions was revealed, with significantly and consistently higher MK measurements in the prefrontal/precentral-postcentral cortex compared to those in the temporal cortex across all six scanned macaque brains. Corresponding higher ND measurements in the prefrontal/precentral-postcentral cortex than in the temporal cortex were also found. The heterogeneity of cortical MK is associated with heterogeneity of histology-based ND measurements, with significant correlation between cortical MK and corresponding ND measurements (P < .005). CONCLUSION: These findings suggested that DKI-derived MK can potentially be an effective noninvasive biomarker quantifying underlying neuroanatomical complexity inside the cerebral cortical mantle for clinical and neuroscientific research.


Asunto(s)
Imagen de Difusión Tensora , Macaca , Animales , Encéfalo/diagnóstico por imagen , Corteza Cerebral/diagnóstico por imagen , Difusión , Imagen de Difusión por Resonancia Magnética
14.
Elife ; 92020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33350380

RESUMEN

Cerebral cortical architecture at birth encodes regionally differential dendritic arborization and synaptic formation. It underlies behavioral emergence of 2-year-olds. Brain changes in 0-2 years are most dynamic across the lifespan. Effective prediction of future behavior with brain microstructure at birth will reveal structural basis of behavioral emergence in typical development and identify biomarkers for early detection and tailored intervention in atypical development. Here we aimed to evaluate the neonate whole-brain cortical microstructure quantified by diffusion MRI for predicting future behavior. We found that individual cognitive and language functions assessed at the age of 2 years were robustly predicted by neonate cortical microstructure using support vector regression. Remarkably, cortical regions contributing heavily to the prediction models exhibited distinctive functional selectivity for cognition and language. These findings highlight regional cortical microstructure at birth as a potential sensitive biomarker in predicting future neurodevelopmental outcomes and identifying individual risks of brain disorders.


Asunto(s)
Corteza Cerebral/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética/métodos , Interpretación de Imagen Asistida por Computador/métodos , Trastornos del Neurodesarrollo/diagnóstico por imagen , Neuroimagen/métodos , Desarrollo Infantil , Preescolar , Femenino , Humanos , Recién Nacido , Masculino , Máquina de Vectores de Soporte
15.
Artif Intell Med ; 106: 101872, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32593397

RESUMEN

Brain network parcellation based on resting-state functional MRI (rs-fMRI) is affected by noise, resulting in spurious small patches and decreased functional homogeneity within each network. Obtaining robust and homogeneous parcellation of neonate brain is more difficult, because neonate rs-fMRI is associated with relatively higher level of noise and no prior knowledge from a functional neonate atlas is available as spatial constraints. To meet these challenges, we developed a novel data-driven Regularized Normalized-cut (RNcut) method. RNcut is formulated by adding two regularization terms, a smoothing term using Markov random fields and a small-patch removal term, to conventional normalized-cut (Ncut) method. The RNcut and competing methods were tested with simulated datasets with known ground truth and then applied to both adult and neonate rs-fMRI datasets. Based on the parcellated networks generated by RNcut, intra-network connectivity was quantified. The test results from simulated datasets demonstrated that the RNcut method is more robust (p < 0.01) to noise and can delineate parcellated functional networks with significantly better (p < 0.01) spatial contiguity and significantly higher (p < 0.01) functional homogeneity than competing methods. Application of RNcut to neonate and adult rs-fMRI dataset revealed distinctive functional brain organization of neonate brains from that of adult brains. Collectively, we developed a novel data-driven RNcut method by integrating conventional Ncut with two regularization terms, generating robust and homogeneous functional parcellation without imposing spatial constraints. A broad range of brain network applications and analyses, especially neonate and infant brain parcellation with noisy and large sample of datasets, can potentially benefit from this RNcut method.


Asunto(s)
Mapeo Encefálico , Encéfalo , Adulto , Encéfalo/diagnóstico por imagen , Humanos , Recién Nacido , Imagen por Resonancia Magnética , Ruido , Descanso
16.
Urology ; 142: 183-189, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32445770

RESUMEN

OBJECTIVE: To reliably and quickly diagnose children with posterior urethral valves (PUV), we developed a multi-instance deep learning method to automate image analysis. METHODS: We built a robust pattern classifier to distinguish 86 children with PUV from 71 children with mild unilateral hydronephrosis based on ultrasound images (3504 in sagittal view and 2558 in transverse view) obtained during routine clinical care. RESULTS: The multi-instance deep learning classifier performed better than classifiers built on either single sagittal images or single transverse images. Particularly, the deep learning classifiers built on single images in the sagittal view and single images in the transverse view obtained area under the receiver operating characteristic curve (AUC) values of 0.796 ± 0.064 and 0.815 ± 0.071, respectively. AUC values of the multi-instance deep learning classifiers built on images in the sagittal and transverse views with mean pooling operation were 0.949 ± 0.035 and 0.954 ± 0.033, respectively. The multi-instance deep learning classifiers built on images in both the sagittal and transverse views with a mean pooling operation obtained an AUC of 0.961 ± 0.026 with a classification rate of 0.925 ± 0.060, specificity of 0.986 ± 0.032, and sensitivity of 0.873 ± 0.120, respectively. Discriminative regions of the kidney located using classification activation mapping demonstrated that the deep learning techniques could identify meaningful anatomical features from ultrasound images. CONCLUSION: The multi-instance deep learning method provides an automatic and accurate means to extract informative features from ultrasound images and discriminate infants with PUV from male children with unilateral hydronephrosis.


Asunto(s)
Aprendizaje Profundo , Hidronefrosis/diagnóstico , Interpretación de Imagen Asistida por Computador/métodos , Anomalías Urogenitales/diagnóstico , Reflujo Vesicoureteral/diagnóstico , Estudios de Casos y Controles , Diagnóstico Diferencial , Estudios de Factibilidad , Femenino , Humanos , Lactante , Recién Nacido , Riñón/anomalías , Riñón/diagnóstico por imagen , Masculino , Curva ROC , Reproducibilidad de los Resultados , Ultrasonografía/métodos , Uretra/anomalías , Uretra/diagnóstico por imagen
17.
Proc IEEE Int Symp Biomed Imaging ; 2020: 1347-1350, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33850604

RESUMEN

Ultrasound images are widely used for diagnosis of congenital abnormalities of the kidney and urinary tract (CAKUT). Since a typical clinical ultrasound image captures 2D information of a specific view plan of the kidney and images of the same kidney on different planes have varied appearances, it is challenging to develop a computer aided diagnosis tool robust to ultrasound images in different views. To overcome this problem, we develop a multi-instance deep learning method for distinguishing children with CAKUT from controls based on their clinical ultrasound images, aiming to automatic diagnose the CAKUT in children based on ultrasound imaging data. Particularly, a multi-instance deep learning method was developed to build a robust pattern classifier to distinguish children with CAKUT from controls based on their ultrasound images in sagittal and transverse views obtained during routine clinical care. The classifier was built on imaging features derived using transfer learning from a pre-trained deep learning model with a mean pooling operator for fusing instance-level classification results. Experimental results have demonstrated that the multi-instance deep learning classifier performed better than classifiers built on either individual sagittal slices or individual transverse slices.

18.
Front Psychiatry ; 11: 600583, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33551870

RESUMEN

Background: Depression is a major psychiatric disorder and the leading cause of disability worldwide. Previous evidence suggested certain pattern of structural alterations were induced by major depression disorder (MDD) with heterogeneity due to patients' clinical characteristics and proposed that early impairment of fronto-limbic-striatal circuit was involved. Yet the hypothesis couldn't be replicated fully. Accordingly, this study aimed to validate this hypothesis in a new set of first-episode, drug naïve MDD patients and further explore the neuroimaging biomarker of illness severity using whole-brain voxel-based morphometry (VBM). Materials and Methods: A total of 93 participants, 30 patients with first-episode medication-naïve MDD, and 63 healthy controls were enrolled in the study. VBM was applied to analyze differences in the gray matter volume (GMV) between these two groups. The correlation between the GMV of the identified brain regions and the severity of clinical symptoms quantified by the Hamilton Depression Scale (HAMD) was further conducted in the post-hoc analysis to confirm the role of GMV structural alteration in clinical symptoms. Results: Our results revealed that the brain gray matter volume of the prefrontal lobe, limbic system, striatum, cerebellum, temporal lobe, and bilateral lingual gyri were significantly decreased in MDD patients compared with healthy controls. Besides, the HAMD scores were negatively correlated with GMV of the right insula and positively correlated with that of the right lingual gyrus. Conclusions: Our findings provide robust evidence that gray matter structural abnormalities within the prefronto-limbic-striatal circuit are implicated in the pathophysiology of MDD at an early stage without confounding influence of medication status. Besides, our data suggest that the cerebellum, lingual gyrus, and fusiform gyrus should also be integrated into the brain alterations in MDD. Future synthesis of individual neuroimaging studies and more advanced statistical analysis comparing subfields of the aforementioned regions are warranted to further shed light on the neurobiology of the disease and assist in the diagnosis of this burdensome disorder.

19.
Brain Imaging Behav ; 14(3): 797-805, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30612341

RESUMEN

The hubs of the brain network play a key role in integrating and transferring information between different functional modules. However, the effects of long-term practice on functional network hubs in chess experts are largely undefined. Here, we investigated whether alterations of hubs can be detected in chess experts using resting-state functional magnetic resonance imaging (rs-fMRI) and graph theory methods. We first mapped the whole-brain voxel-wise functional connectivity and calculated the functional connectivity strength (FCS) map in each of the 28 chess players and 27 gender- and age-matched healthy novice players. Whole-brain resting-state functional connectivity analyses for the changed hub areas were conducted to further elucidate the corresponding changes of functional connectivity patterns in chess players. The hub analysis revealed increased FCS in the right posterior fusiform gyrus of the chess players, which was supported by analyses of this area's regional homogeneity (ReHo), amplitude of low frequency fluctuations (ALFF), and fractional amplitude of low frequency fluctuations (fALFF). The following functional connectivity analyses revealed increased functional connectivities between the right posterior fusiform gyrus and the visuospatial attention and motor networks in chess players. These findings demonstrate that cognitive expertise has a positive influence on the functions of the brain regions associated with the chess expertise and that increased functional connections might in turn facilitate within and between networks communication for expert behavior to get superior performance.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Atención , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Humanos , Lóbulo Temporal
20.
Cereb Cortex ; 30(4): 2673-2689, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-31819951

RESUMEN

Comprehensive delineation of white matter (WM) microstructural maturation from birth to childhood is critical for understanding spatiotemporally differential circuit formation. Without a relatively large sample of datasets and coverage of critical developmental periods of both infancy and early childhood, differential maturational charts across WM tracts cannot be delineated. With diffusion tensor imaging (DTI) of 118 typically developing (TD) children aged 0-8 years and 31 children with autistic spectrum disorder (ASD) aged 2-7 years, the microstructure of every major WM tract and tract group was measured with DTI metrics to delineate differential WM maturation. The exponential model of microstructural maturation of all WM was identified. The WM developmental curves were separated into fast, intermediate, and slow phases in 0-8 years with distinctive time period of each phase across the tracts. Shorter periods of the fast and intermediate phases in certain tracts, such as the commissural tracts, indicated faster earlier development. With TD WM maturational curves as the reference, higher residual variance of WM microstructure was found in children with ASD. The presented comprehensive and differential charts of TD WM microstructural maturation of all major tracts and tract groups in 0-8 years provide reference standards for biomarker detection of neuropsychiatric disorders.


Asunto(s)
Trastorno del Espectro Autista/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Encéfalo/crecimiento & desarrollo , Imagen de Difusión Tensora/tendencias , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/crecimiento & desarrollo , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA