Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 357
Filtrar
1.
J Dairy Sci ; 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39343233

RESUMEN

The objective of this study was to evaluate the GreenFeed (GF) and respiration chambers (RC) for daily and intraday measurements of the enteric gaseous exchange, as well as the metabolic heat production, lying behavior, and feed intake (FI) rate of dairy cows at these 2 respective housing conditions [tie-stall barn (TS) vs. RC] during the summer periods. Sixteen multiparous lactating dairy cows were recruited and arranged in a randomized complete block design with a baseline period established for each cow. Cows were given a basal diet (CON) for a baseline period of 7 d and were then fed a 3-nitrooxypropanol (3-NOP)-containing feed for the subsequent 26 d as experimental period. During both the baseline and the last 7 d of treatment period, gaseous exchanges of each animal were measured in the TS using GF for 8 6-hourly staggered measurements over 3 d, immediately followed by the measurement in RC for 2 d. Corresponding DMI, milk yield, and behavior parameters (e.g., lying behavior and FI rate) in TS and RC were recorded. The correlation coefficients of CH4 and H2 using raw data were 0.84 and 0.85, respectively. For all gases, correlation coefficients between GF and RC on individual cow level decreased when the marginal fixed effects (e.g., inhibitor and breed) were corrected by a mixed model. There were no differences in daily CH4 production or intensity between GF and RC (442 vs. 443 g CH4/d or 16.6 vs. 16.2 g CH4 /kg MY). However, greater CH4 yield was measured by GF than RC (19.0 vs. 17.8 g CH4/kg DMI), driven by a lower DMI (23.3 vs. 24.6 kg/d) when cows were housed in TS sampled by GF compared with cows being housed and sampled in RC. The correlations for CO2 production and O2 consumption were moderate and expected due to the variation associated with the mild heat stress condition during GF measurements in the TS (Thermal humidity index (THI) 56 vs. 68), as indicated by the reduced lying time (-2.1 h/d). At the intraday level, there was an interaction between techniques and hour-of-day for CH4 production, as indicated by the discrepancies in post-prandial CH4 emissions between techniques. In summary, this set of results showed that there were strong positive correlations for CH4 and H2 emissions between GF and RC based on individual cow data. However, such relationship should be interpreted with caution, given the data clustering resulting from the use of inhibitor 3-NOP. On treatment level, these 2 techniques detected similar inhibitor effect on the estimated daily CH4 emissions. The intraday patterns of CH4 and H2 production captured by GF provided a close approximation for those measured by RC. Nevertheless, potential underestimation may occur, especially following fresh feed delivery. For measuring CO2 production and O2 consumption, the GF captured similar intraday variations to those in the RC. However, the estimated daily production and consumption were not directly comparable, which was expected due to the variable thermal conditions during the summer. Further evaluations under the same weather conditions are warranted.

2.
Biomedicines ; 12(8)2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39200259

RESUMEN

Brain arteriovenous malformations (bAVMs) substantially increase the risk for intracerebral hemorrhage (ICH), which is associated with significant morbidity and mortality. However, the treatment options for bAVMs are severely limited, primarily relying on invasive methods that carry their own risks for intraoperative hemorrhage or even death. Currently, there are no pharmaceutical agents shown to treat this condition, primarily due to a poor understanding of bAVM pathophysiology. For the last decade, bAVM research has made significant advances, including the identification of novel genetic mutations and relevant signaling in bAVM development. However, bAVM pathophysiology is still largely unclear. Further investigation is required to understand the detailed cellular and molecular mechanisms involved, which will enable the development of safer and more effective treatment options. Endothelial cells (ECs), the cells that line the vascular lumen, are integral to the pathogenesis of bAVMs. Understanding the fundamental role of ECs in pathological conditions is crucial to unraveling bAVM pathophysiology. This review focuses on the current knowledge of bAVM-relevant signaling pathways and dysfunctions in ECs, particularly the endothelial-to-mesenchymal transition (EndMT).

3.
J Dairy Sci ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39067761

RESUMEN

Respiratory rate (RR) is an important indicator of the health and welfare status of dairy cows. In recent years, progress has been made in monitoring the RR of dairy cows using video data and learning methods. However, existing approaches often involve multiple processing modules, such as region of interest (ROI) detection and tracking, which can introduce errors that propagate through successive steps. The objective of this study was to develop an end-to-end computer vision method to predict RR of dairy cows continuously and automatically. The method leverages the capabilities of a state-of-the-art Transformer model, VideoMAE, which divides video frames into patches as input tokens, enabling the automated selection and featurization of relevant regions, such as a cow's abdomen, for predicting RR. The original encoder of VideoMAE was retained, and a classification head was added on top of it. Further, the weights of the first 11 layers of the pre-trained model were kept, while the weights of the final layer and classifier were fine-tuned using video data collected in a tie-stall barn from 6 dairy cows. Respiratory rates measured using a respiratory belt for individual cows were serving as the ground truth (GT). The evaluation of the developed model was conducted using multiple metrics, including mean absolute error (MAE) of 2.58 breaths per minute (bpm), root mean squared error (RMSE) of 3.52 bpm, root mean squared prediction error (RMSPE; as a proportion of observed mean) of 15.03%, and Pearson correlation (r) of 0.86. Compared with a conventional method involving multiple processing modules, the end-to-end approach performed better in terms of MAE, RMSE and RMSPE. These results suggest the potential to implement the developed computer vision method for an end-to-end solution, for monitoring RR of dairy cows automatically in a tie-stall setting. Future research on integrating this method with other behavioral detection and animal identification algorithms for animal monitoring in a free-stall dairy barn can be beneficial for a broader application.

4.
ESMO Open ; 9(8): 103636, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39002360

RESUMEN

BACKGROUND: The mouse double minute 2 homolog (MDM2) oncogene exerts oncogenic activities in many cancers and represents a potential therapeutic target. This trial evaluated the safety, pharmacokinetics, pharmacodynamics, and preliminary efficacy of alrizomadlin (APG-115), a novel MDM2/p53 inhibitor, in patients with advanced solid tumors. PATIENTS AND METHODS: Patients with histologically confirmed advanced solid tumors who had progressed to standard treatment or lacked effective therapies were recruited. Alrizomadlin was administered once daily every other day for 21 days of a 28-day cycle until disease progression or intolerable toxicity. RESULTS: A total of 21 patients were enrolled and treated with alrizomadlin; 57.1% were male and the median age was 47 (25-60) years. The maximum tolerated dose of alrizomadlin was 150 mg and the recommended phase II dose was 100 mg. One patient in the 200-mg cohort experienced dose-limiting toxicity of thrombocytopenia and febrile neutropenia. The most common grade 3/4 treatment-related adverse events were thrombocytopenia (33.3%), lymphocytopenia (33.3%), neutropenia (23.8%), and anemia (23.8%). Alrizomadlin demonstrated approximately linear pharmacokinetics (dose range 100-200 mg) and was associated with increased plasma macrophage inhibitory cytokine-1, indicative of p53 pathway activation. Of the 20 assessable patients, 2 [10%, 95% confidence interval (CI) 1.2% to 31.7%] patients achieved partial response and 10 (50%, 95% CI 27.2% to 72.8%) showed stable disease. The median progression-free survival was 6.1 (95% CI 1.7-10.4) months, which was significantly longer in patients with wild-type versus mutant TP53 (7.9 versus 2.2 months, respectively; P < 0.001). Among patients with MDM2 amplification and wild-type TP53, the overall response rate was 25% (2/8) and the disease control rate was 100% (8/8). CONCLUSIONS: Alrizomadlin had an acceptable safety profile and demonstrated promising antitumor activity in MDM2-amplified and TP53 wild-type tumors. This study supports further exploration of alrizomadlin with recommended doses of 100 mg q.o.d. in 21 days on and 7 days off regimen.


Asunto(s)
Neoplasias , Proteínas Proto-Oncogénicas c-mdm2 , Proteína p53 Supresora de Tumor , Humanos , Masculino , Femenino , Persona de Mediana Edad , Neoplasias/tratamiento farmacológico , Adulto , Proteínas Proto-Oncogénicas c-mdm2/antagonistas & inhibidores , Proteína p53 Supresora de Tumor/metabolismo , Dosis Máxima Tolerada , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/farmacocinética
5.
Natl Sci Rev ; 11(7): nwae183, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39055168

RESUMEN

Ultrasensitive protein identification is of paramount importance in basic research and clinical diagnostics but remains extremely challenging. A key bottleneck in preventing single-molecule protein sequencing is that, unlike the revolutionary nucleic acid sequencing methods that rely on the polymerase chain reaction (PCR) to amplify DNA and RNA molecules, protein molecules cannot be directly amplified. Decoding the proteins via amplification of certain fingerprints rather than the intact protein sequence thus represents an appealing alternative choice to address this formidable challenge. Herein, we report a proof-of-concept method that relies on residue-resolved DNA barcoding and composition code counting for amplifiable protein fingerprinting (AmproCode). In AmproCode, selective types of residues on peptides or proteins are chemically labeled with a DNA barcode, which can be amplified and quantified via quantitative PCR. The operation generates a relative ratio as the residue-resolved 'composition code' for each target protein that can be utilized as the fingerprint to determine its identity from the proteome database. We developed a database searching algorithm and applied it to assess the coverage of the whole proteome and secretome via computational simulations, proving the theoretical feasibility of AmproCode. We then designed the residue-specific DNA barcoding and amplification workflow, and identified different synthetic model peptides found in the secretome at as low as the fmol/L level for demonstration. These results build the foundation for an unprecedented amplifiable protein fingerprinting method. We believe that, in the future, AmproCode could ultimately realize single-molecule amplifiable identification of trace complex samples without further purification, and it may open a new avenue in the development of next-generation protein sequencing techniques.

6.
J Am Chem Soc ; 146(22): 15186-15197, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38789930

RESUMEN

Effective antitumor immunity hinges on the specific engagement between tumor and cytotoxic immune cells, especially cytotoxic T cells. Although investigating these intercellular interactions is crucial for characterizing immune responses and guiding immunotherapeutic applications, direct and quantitative detection of tumor-T cell interactions within a live-cell context remains challenging. We herein report a photocatalytic live-cell interaction labeling strategy (CAT-Cell) relying on the bioorthogonal decaging of quinone methide moieties for sensitive and selective investigation and quantification of tumor-T cell interactions. By developing quinone methide-derived probes optimized for capturing cell-cell interactions (CCIs), we demonstrated the capacity of CAT-Cell for detecting CCIs directed by various types of receptor-ligand pairs (e.g., CD40-CD40L, TCR-pMHC) and further quantified the strengths of tumor-T cell interactions that are crucial for evaluating the antitumor immune responses. We further applied CAT-Cell for ex vivo quantification of tumor-specific T cell interactions on splenocyte and solid tumor samples from mouse models. Finally, the broad compatibility and utility of CAT-Cell were demonstrated by integrating it with the antigen-specific targeting system as well as for tumor-natural killer cell interaction detection. By leveraging the bioorthogonal photocatalytic decaging chemistry on quinone methide, CAT-Cell provides a sensitive, tunable, universal, and noninvasive toolbox for unraveling and quantifying the crucial but delicate tumor-immune interactions under live-cell settings.


Asunto(s)
Indolquinonas , Indolquinonas/química , Animales , Ratones , Humanos , Comunicación Celular , Línea Celular Tumoral , Neoplasias/inmunología
7.
J Dairy Sci ; 107(9): 6817-6833, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38762115

RESUMEN

The objective of this study was to determine the potential effect and interaction of 3-nitrooxypropanol (3-NOP; Bovaer, DSM-Firmenich Nutrition Products Ltd.) and whole cottonseed (WCS) on lactational performance and enteric methane (CH4) emission of dairy cows. A total of 16 multiparous cows, including 8 Holstein Friesian (HF) and 8 Brown Swiss (BS; 224 ± 36 DIM, 26 ± 3.7 kg milk yield, mean ± SD), were used in a split-plot design, where the main plot was the breed of cows. Within each subplot, cows were randomly assigned to a treatment sequence in a replicated 4 × 4 Latin square design with 2 × 2 factorial arrangements of treatments with four 24-d periods. The experimental treatments were as follows: (1) control (basal TMR), (2) 3-NOP (60 mg/kg TMR DM), (3) WCS (5% TMR DM), and (4) 3-NOP + WCS. The treatment diets were balanced for ether extract, crude protein, and NDF contents (4%, 16%, and 43% of TMR DM, respectively). The basal diets were fed twice daily at 0800 and 1800 h. Dry matter intake and milk yield were measured daily, and enteric gas emissions were measured (using the GreenFeed System, C-Lock Inc.) during the last 3 d of each 24-d experimental period when animals were housed in tiestalls. There was no difference in DMI on treatment level, whereas the WCS treatment increased ECM yield and milk fat yield. No interaction of 3-NOP and WCS occurred for any of the enteric gas emission parameters, but 3-NOP decreased CH4 production (g/d), CH4 yield (g/kg DMI), and CH4 intensity (g/kg ECM) by 13%, 14%, and 13%, respectively. Further, an unexpected interaction of breed by 3-NOP was observed for different enteric CH4 emission metrics: HF cows had a greater CH4 mitigation effect compared with BS cows for CH4 production (g/d; 18% vs. 8%), CH4 intensity (g/kg milk yield; 19% vs. 3%), and CH4 intensity (g/kg ECM; 19% vs. 4%). Hydrogen production was increased by 2.85-fold in HF and 1.53-fold in BS cows receiving 3-NOP. Further, a 3-NOP × time interaction occurred for both breeds. In BS cows, 3-NOP tended to reduce CH4 production by 18% at approximately 4 h after morning feeding, but no effect was observed at other time points. In HF cows, the greatest mitigation effect of 3-NOP (29.6%) was observed immediately after morning feeding, and it persisted at around 23% to 26% for 10 h until the second feed provision, and 3 h thereafter, in the evening. In conclusion, supplementing 3-NOP at 60 mg/kg DM to a high-fiber diet resulted in 18% to 19% reduction in enteric CH4 emission in Swiss HF cows. The lower response to 3-NOP by BS cows was unexpected and has not been observed in other studies. These results should be interpreted with caution due to the low number of cows per breed. Finally, supplementing WCS at 5% of DM improved ECM and milk fat yield but did not enhance the CH4 inhibition effect of 3-NOP of dairy cows.


Asunto(s)
Alimentación Animal , Dieta , Lactancia , Metano , Leche , Animales , Bovinos , Lactancia/efectos de los fármacos , Leche/química , Leche/metabolismo , Metano/biosíntesis , Metano/metabolismo , Femenino , Dieta/veterinaria , Propanoles/metabolismo , Gossypium
8.
Nat Commun ; 15(1): 2712, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38548729

RESUMEN

In situ profiling of subcellular proteomics in primary living systems, such as native tissues or clinic samples, is crucial for understanding life processes and diseases, yet challenging due to methodological obstacles. Here we report CAT-S, a bioorthogonal photocatalytic chemistry-enabled proximity labeling method, that expands proximity labeling to a wide range of primary living samples for in situ profiling of mitochondrial proteomes. Powered by our thioQM labeling warhead development and targeted bioorthogonal photocatalytic chemistry, CAT-S enables the labeling of mitochondrial proteins in living cells with high efficiency and specificity. We apply CAT-S to diverse cell cultures, dissociated mouse tissues as well as primary T cells from human blood, portraying the native-state mitochondrial proteomic characteristics, and unveiled hidden mitochondrial proteins (PTPN1, SLC35A4 uORF, and TRABD). Furthermore, CAT-S allows quantification of proteomic perturbations on dysfunctional tissues, exampled by diabetic mouse kidneys, revealing the alterations of lipid metabolism that may drive disease progression. Given the advantages of non-genetic operation, generality, and spatiotemporal resolution, CAT-S may open exciting avenues for subcellular proteomic investigations of primary samples that are otherwise inaccessible.


Asunto(s)
Proteoma , Proteómica , Animales , Humanos , Ratones , Proteínas Mitocondriales
9.
Trials ; 25(1): 150, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38419030

RESUMEN

BACKGROUND: Recruitment of participants is the greatest risk to completion of most clinical trials, with 20-40% of trials failing to reach the targeted enrollment. This is particularly true of trials of central nervous system (CNS) therapies such as intervention for chronic stroke. The PISCES III trial was an invasive trial of stereotactically guided intracerebral injection of CTX0E03, a fetal derived neural stem cell line, in patients with chronic disability due to ischemic stroke. We report on the experience using a novel hybrid recruitment approach of a patient-facing portal to self-identify and perform an initial screen for general trial eligibility (tier 1), followed by phone screening and medical records review (tier 2) prior to a final in-person visit to confirm eligibility and consent. METHODS: Two tiers of screening were established: an initial screen of general eligibility using a patient-facing web portal (tier 1), followed by a more detailed screen that included phone survey and medical record review (tier 2). If potential participants passed the tier 2 screen, they were referred directly to visit 1 at a study site, where final in-person screening and consent were performed. Rates of screening were tracked during the period of trial recruitment and sources of referrals were noted. RESULTS: The approach to screening and recruitment resulted in 6125 tier 1 screens, leading to 1121 referrals to tier 2. The tier 2 screening resulted in 224 medical record requests and identification of 86 qualifying participants for referral to sites. The study attained a viable recruitment rate of 6 enrolled per month prior to being disrupted by COVID 19. CONCLUSIONS: A tiered approach to eligibility screening using a hybrid of web-based portals to self-identify and screen for general eligibility followed by a more detailed phone and medical record review allowed the study to use fewer sites and reduce cost. Despite the difficult and narrow population of patients suffering moderate chronic disability from stroke, this strategy produced a viable recruitment rate for this invasive study of intracranially injected neural stem cells. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT03629275.


Asunto(s)
Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Selección de Paciente , Proyectos de Investigación , Accidente Cerebrovascular/diagnóstico , Accidente Cerebrovascular/terapia , Registros Médicos
10.
Nat Chem ; 16(4): 533-542, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38418535

RESUMEN

Tryptophan (Trp) plays a critical role in the regulation of protein structure, interactions and functions through its π system and indole N-H group. A generalizable method for blocking and rescuing Trp interactions would enable the gain-of-function manipulation of various Trp-containing proteins in vivo, but generating such a platform remains challenging. Here we develop a genetically encoded N1-vinyl-caged Trp capable of rapid and bioorthogonal decaging through an optimized inverse electron-demand Diels-Alder reaction, allowing site-specific activation of Trp on a protein of interest in living cells. This chemical activation of a genetically encoded caged-tryptophan (Trp-CAGE) strategy enables precise activation of the Trp of interest underlying diverse important molecular interactions. We demonstrate the utility of Trp-CAGE across various protein families, such as catalase-peroxidases and kinases, as translation initiators and posttranslational modification readers, allowing the modulation of epigenetic signalling in a temporally controlled manner. Coupled with computer-aided prediction, our strategy paves the way for bioorthogonal Trp activation on more than 28,000 candidate proteins within their native cellular settings.


Asunto(s)
Proteínas , Triptófano , Proteínas/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...