Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 132(24): 243403, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38949354

RESUMEN

A unitary Fermi gas in an isotropic harmonic trap is predicted to show scale and conformal symmetry that have important consequences in its thermodynamic and dynamical properties. By experimentally realizing a unitary Fermi gas in an isotropic harmonic trap, we demonstrate its universal expansion dynamics along each direction and at different temperatures. We show that as a consequence of SO(2,1) symmetry, the measured release energy is equal to that of the trapping energy. We further observe the breathing mode with an oscillation frequency twice the trapping frequency and a small damping rate, providing the evidence of SO(2,1) symmetry. In addition, away from resonance when scale invariance is broken, we determine the effective exponent γ that relates the chemical potential and average density along the BEC-BCS crossover, which qualitatively agrees with the mean field predictions. This Letter opens the possibility of studying nonequilibrium dynamics in a conformal invariant system in the future.

2.
Int J Biol Macromol ; 264(Pt 1): 130609, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38437933

RESUMEN

5-Hydroxytryptophan (5-HTP), as the precursor of serotonin and melatonin in animals, can regulate mood, sleep, and behavior, which is widely used in pharmaceutical and health products industry. The enzymatic production of 5-hydroxytryptophan (5-HTP) from L-tryptophan (L-Trp) using tryptophan hydroxylase (TPH) show huge potential in application due to its advantages, such as mild reaction conditions, avoidance of protection/deprotection processes, excellent regioselectivity and considerable catalytic efficiency, compared with chemical synthesis and natural extraction. However, the low thermostability of TPH restricted its hydroxylation efficiency toward L-Trp. In this study, we aimed to improve the thermostability of TPH via semi-rational design guided by (folding free energy) ΔΔG fold calculation. After two rounds of evolution, two beneficial mutants M1 (S422V) and M30 (V275L/I412K) were obtained. Thermostability evaluation showed that M1 and M30 possessed 5.66-fold and 6.32-fold half-lives (t1/2) at 37 °C, and 4.2 °C and 6.0 °C higher melting temperature (Tm) than the WT, respectively. The mechanism behind thermostability improvement was elucidated with molecular dynamics simulation. Furthermore, biotransformation of 5-HTP from L-Trp was performed, M1 and M30 displayed 1.80-fold and 2.30-fold than that of WT, respectively. This work provides important insights into the thermostability enhancement of TPH and generate key mutants that could be robust candidates for practical production of 5-HTP.


Asunto(s)
5-Hidroxitriptófano , Triptófano Hidroxilasa , Animales , 5-Hidroxitriptófano/metabolismo , Triptófano Hidroxilasa/genética , Triptófano Hidroxilasa/metabolismo , Triptófano/metabolismo , Serotonina/metabolismo , Ingeniería de Proteínas
3.
Entropy (Basel) ; 25(6)2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37372221

RESUMEN

This paper investigates the exponential consensus problem for a class of nonlinear leader-following multi-agent systems using impulsive control, where impulses are generated by the event-triggered mechanism and are subjected to actuation delays. It is proved that Zeno behavior can be avoided, and by employing the linear matrix inequality technique, some sufficient conditions for realizing exponential consensus of the considered system are derived. Actuation delay is an important factor affecting the consensus of the system, and our results show that increasing the actuation delay can enlarge the lower bound of the triggering interval, while it harms the consensus. To demonstrate the validity of the obtained results, a numerical example is provided.

4.
Entropy (Basel) ; 24(4)2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35455110

RESUMEN

The quasi-consensus of a class of nonlinear time-varying multi-agent systems suffering from both external inputs and deception attacks is studied in this paper. This is different from a time-varying matrix, which is assumed to be bounded; further reasonable assumptions are supposed. In addition, impulsive deception attacks modeled with Bernoulli variables are considered. Sufficient conditions to achieve quasi-consensus are given, and the upper bounds of the error state related to the deception attacks is derived. Finally, a numerical simulation example is provided to show the validity of the obtained results.

5.
IEEE Trans Cybern ; 52(3): 1836-1849, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32568719

RESUMEN

Based on the distributed event-triggered impulsive mechanism, the leader-following mean-square consensus of stochastic multiagent systems with randomly occurring uncertainties and randomly occurring nonlinearities is investigated for the first time in this article. In order to make better use of the limited communication resources, we proposed some novel communication rules among agents and corresponding control protocol. Moreover, some new triggering functions are designed for different types of agents, which cannot only ensure that the Zeno behavior can be excluded but also make the upper bound of impulsive interval in the total time sequence satisfy a newly proposed constraint condition. When the expected value of the triggering function of the i th agent is non-negative within an event time interval, the impulsive control will be triggered. If the system achieves the consensus, the triggering events of all agents will not occur after some time. The original system is transformed into the delay system by using the input delay approach. Based on the Lyapunov stability theory, several sufficient delay-independent criteria for mean-square consensus are derived by a class of Halanay impulsive differential inequalities. Finally, the effectiveness of theoretical results is illustrated by numerical simulation examples.

6.
Phys Rev Lett ; 125(26): 260407, 2020 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-33449717

RESUMEN

Spin-orbital-angular-momentum (SOAM) coupling has been realized in recent experiments of Bose-Einstein condensates [Chen et al., Phys. Rev. Lett. 121, 113204 (2018)PRLTAO0031-900710.1103/PhysRevLett.121.113204 and Zhang et al., Phys. Rev. Lett. 122, 110402 (2019)PRLTAO0031-900710.1103/PhysRevLett.122.110402], where the orbital angular momentum imprinted upon bosons leads to quantized vortices. For fermions, such an exotic synthetic gauge field can provide fertile ground for fascinating pairing schemes and rich superfluid phases, which are yet to be explored. Here we demonstrate how SOAM coupling stabilizes vortices in Fermi superfluids through a unique mechanism that can be viewed as the angular analog to that of the spin-orbit-coupling-induced Fulde-Ferrell state under a Fermi surface deformation. Remarkably, the vortex size is comparable with the beam waist of Raman lasers generating the SOAM coupling, which is typically much larger than previously observed vortices in Fermi superfluids. With tunable size and core structure, these giant vortex states provide unprecedented experimental access to topological defects in Fermi superfluids.

7.
Phys Rev Lett ; 122(11): 110402, 2019 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-30951335

RESUMEN

By inducing a Raman transition using a pair of Gaussian and Laguerre-Gaussian laser beams, we realize a ^{87}Rb condensate whose orbital angular momentum (OAM) and its internal spin states are coupled. By varying the detuning and the coupling strength of the Raman transition, we experimentally map out the ground-state phase diagram of the system for the first time. The transitions between different phases feature a discontinuous jump of the OAM and the spin polarization, and hence are of first order. We demonstrate the hysteresis loop associated with such first-order phase transitions. The role of interatomic interaction is also elucidated. Our work paves the way to explore exotic quantum phases in the spin-orbital-angular-momentum coupled quantum gases.

8.
Entropy (Basel) ; 21(8)2019 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-33267492

RESUMEN

In this paper, we investigate the finite-time synchronization problem for a class of Markovian jumping complex networks (MJCNs) with non-identical nodes and impulsive effects. Sufficient conditions for the MJCNs are presented based on an M-matrix technique, Lyapunov function method, stochastic analysis technique, and suitable comparison systems to guarantee finite-time synchronization. At last, numerical examples are exploited to illustrate our theoretical results, and they testify the effectiveness of our results for complex dynamic systems.

9.
Phys Rev Lett ; 120(6): 060408, 2018 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-29481256

RESUMEN

We develop the contact theory for spin-orbit-coupled Fermi gases. By using a perturbation method, we derive analytically the universal two-body behavior at short distance, which does not depend on the short-range details of interatomic potentials. We find that two new scattering parameters need to be introduced because of spin-orbit coupling, besides the traditional s- and p-wave scattering length (volume) and effective ranges. This is a general and unique feature for spin-orbit-coupled systems. Consequently, two new adiabatic energy relations with respect to the new scattering parameters are obtained, in which a new contact is involved because of spin-orbit coupling. In addition, we derive the asymptotic behavior of the large-momentum distribution, and find that the subleading tail is corrected by the new contact. This work paves the way for exploring the profound properties of spin-orbit-coupled many-body systems, according to two-body solutions.

10.
Phys Rev Lett ; 112(25): 250401, 2014 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-25014794

RESUMEN

It is well known that the magnetic Feshbach resonances of cold atoms are sensitive to the magnitude of the external magnetic field. Much less attention has been paid to the direction of such a field. In this work we calculate the scattering properties of spin polarized fermionic atoms in reduced dimensions, near a p-wave Feshbach resonance. Because of the spatial anisotropy of the p-wave interaction, the scattering has a nontrivial dependence on both the magnitude and the direction of the magnetic field. In addition, we identify an inelastic scattering process which is impossible in the isotropic-interaction model; the rate of this process depends considerably on the direction of the magnetic field. Significantly, an Einstein-Podolsky-Rosen entangled pair of identical fermions may be produced during this inelastic collision. This work opens a new method to manipulate resonant cold atomic interactions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...