Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Bioengineering (Basel) ; 10(3)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36978737

RESUMEN

Gut microbiota play a key role in health maintenance and disease pathogenesis in animals. Dietary phytochemicals are crucial factors shaping gut bacteria. Here, we investigated the function and mechanism of a phytogenic formulation, EUBIO-BPSG (BP), in laying hens. We found that BP dose-dependently improved health and egg production in 54-week-old hens. Furthermore, BP was correlated with increased fecal Lactobacillus, decreased Escherichia coli and Salmonella enterica, and reduced antibiotic resistance (AR) and antibiotic resistance genes (ARG) in chicken stools. The 16S rDNA data showed that BP increased seven genera of probiotics and reduced 13 genera of pathogens in chicken feces. In vitro co-culture experiments showed that BP at 4 µg/mL and above promoted growth of L. reuteri while large 100- and 200-fold higher doses suppressed growth of E. coli and S. enterica, respectively. Mechanistic studies indicated that L. reuteri and its supernatants antagonized growth of E. coli and S. enterica but not vice-versa. Five short-chain fatty acids and derivatives (SCFA) produced from L. reuteri directly killed both pathogens via membrane destruction. Furthermore, BP inhibited conjugation and recombination of ARG via interference with conjugation machinery and integrase activity in E. coli. Collectively, this work suggests that BP promotes host health and reproductive performance in laying hens through regulation of gut microbiota through increasing probiotics and decreasing pathogens and spreading ARG.

2.
FEMS Microbiol Lett ; 369(1)2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35641156

RESUMEN

A moderate halophilic bacterium that could accumulate ectoine and hydroxyectoine was isolated from soil near a salt mine and was identified as a Sinobaca sp. (designed strain H24) according to 16S rRNA gene sequence analysis. The bacterium grew well in the presence of 1-2 M NaCl, while growth in a medium that contained 2 M NaCl led to higher accumulation of ectoines. The yields of ectoine and hydroxyectoine by Sinobaca sp. H24 reached 11.27 mg/l and 1.34 mg/l, respectively, when cultured in the following medium: NaCl (2 M), peptone (5 g/l), yeast extract (1 g/l), NH4Cl (0.02 M), KH2PO4 (1 M), K2HPO4 (0.1 M), and glycerol (1% w/v). Genes that are involved in ectoine biosynthesis of Sinobaca sp. H24 were also identified, and their sequences were determined by a metagenomics approach. The results demonstrated that Sinobaca sp. H24 possesses ectoine metabolism genes for both ectoine biosynthesis (ectA, ectB, ectC, and ectD) and ectoine degradation (doeA). Genes that are related to ectoine biosynthesis, such as lysC and asd, were also characterized. The identification and characterization results for ectoine/hydroxyectoine biosynthesis genes are in agreement with the physiology of Sinobaca sp. H24 as a potential candidate for ectoine production for industrial applications. This report established for the first time the accumulation of ectoine/hydroxyectoine in Sinobaca sp. and characterized the genes that are involved in ectoine/hydroxyectoine biosynthesis in Sinobaca sp. H24.


Asunto(s)
Aminoácidos Diaminos , Cloruro de Sodio , Aminoácidos Diaminos/genética , Aminoácidos Diaminos/metabolismo , ARN Ribosómico 16S/genética , Cloruro de Sodio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA