Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Genome Biol ; 25(1): 175, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961490

RESUMEN

BACKGROUND: Transposable elements play a critical role in maintaining genome architecture during neurodevelopment. Short Interspersed Nuclear Elements (SINEs), a major subtype of transposable elements, are known to harbor binding sites for the CCCTC-binding factor (CTCF) and pivotal in orchestrating chromatin organization. However, the regulatory mechanisms controlling the activity of SINEs in the developing brain remains elusive. RESULTS: In our study, we conduct a comprehensive genome-wide epigenetic analysis in mouse neural precursor cells using ATAC-seq, ChIP-seq, whole genome bisulfite sequencing, in situ Hi-C, and RNA-seq. Our findings reveal that the SET domain bifurcated histone lysine methyltransferase 1 (SETDB1)-mediated H3K9me3, in conjunction with DNA methylation, restricts chromatin accessibility on a selective subset of SINEs in neural precursor cells. Mechanistically, loss of Setdb1 increases CTCF access to these SINE elements and contributes to chromatin loop reorganization. Moreover, de novo loop formation contributes to differential gene expression, including the dysregulation of genes enriched in mitotic pathways. This leads to the disruptions of cell proliferation in the embryonic brain after genetic ablation of Setdb1 both in vitro and in vivo. CONCLUSIONS: In summary, our study sheds light on the epigenetic regulation of SINEs in mouse neural precursor cells, suggesting their role in maintaining chromatin organization and cell proliferation during neurodevelopment.


Asunto(s)
Cromatina , N-Metiltransferasa de Histona-Lisina , Células-Madre Neurales , Elementos de Nucleótido Esparcido Corto , Animales , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Ratones , Cromatina/metabolismo , Metilación de ADN , Factor de Unión a CCCTC/metabolismo , Factor de Unión a CCCTC/genética , Epigénesis Genética , Histonas/metabolismo , Encéfalo/metabolismo , Encéfalo/citología
2.
Cell Biol Toxicol ; 40(1): 37, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38777957

RESUMEN

Bisphenol A (BPA) is a common component in the manufacture of daily plastic consumer goods. Recent studies have suggested that prenatal exposure to BPA can increase the susceptibility of offspring to mental illness, although the underlying mechanisms remain unclear. In this study, we performed transcriptomic and epigenomic profiling in the adult mouse brain following prenatal exposure to low-dose BPA. We observed a sex-specific transcriptional dysregulation in the cortex, with more significant differentially expressed genes was observed in adult cortex from male offspring. Moreover, the upregulated genes primarily influenced neuronal functions, while the downregulated genes were significantly associated with energy metabolism pathways. More evidence supporting impaired mitochondrial function included a decreased ATP level and a reduced number of mitochondria in the cortical neuron of the BPA group. We further investigated the higher-order chromatin regulatory patterns of DEGs by incorporating published Hi-C data. Interestingly, we found that upregulated genes exhibited more distal interactions with multiple enhancers, while downregulated genes displayed relatively short-range interactions among adjacent genes. Our data further revealed decreased H3K9me3 signal on the distal enhancers of upregulated genes, whereas increased DNA methylation and H3K27me3 signals on the promoters of downregulated genes. In summary, our study provides compelling evidence for the potential health risks associated with prenatal exposure to BPA, and uncovers sex-specific transcriptional changes with a complex interplay of multiple epigenetic mechanisms.


Asunto(s)
Compuestos de Bencidrilo , Encéfalo , Metilación de ADN , Epigénesis Genética , Fenoles , Efectos Tardíos de la Exposición Prenatal , Animales , Compuestos de Bencidrilo/toxicidad , Fenoles/toxicidad , Femenino , Embarazo , Efectos Tardíos de la Exposición Prenatal/genética , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/metabolismo , Epigénesis Genética/efectos de los fármacos , Masculino , Ratones , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Metilación de ADN/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Transcriptoma/genética , Ratones Endogámicos C57BL
3.
Mol Autism ; 15(1): 5, 2024 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-38254177

RESUMEN

BACKGROUND: Helsmoortel-Van der Aa syndrome (HVDAS) is a rare genetic disorder caused by variants in the activity-dependent neuroprotector homeobox (ADNP) gene; hence, it is also called ADNP syndrome. ADNP is a multitasking protein with the function as a transcription factor, playing a critical role in brain development. Furthermore, ADNP variants have been identified as one of the most common single-gene causes of autism spectrum disorder (ASD) and intellectual disability. METHODS: We assembled a cohort of 15 Chinese pediatric patients, identified 13 variants in the coding region of ADNP gene, and evaluated their clinical phenotypes. Additionally, we constructed the corresponding ADNP variants and performed western blotting and immunofluorescence analysis to examine their protein expression and subcellular localization in human HEK293T and SH-SY5Y cells. RESULTS: Our study conducted a thorough characterization of the clinical manifestations in 15 children with ADNP variants, and revealed a broad spectrum of symptoms including global developmental delay, intellectual disability, ASD, facial abnormalities, and other features. In vitro studies were carried out to check the expression of ADNP with identified variants. Two cases presented missense variants, while the remainder exhibited nonsense or frameshift variants, leading to truncated mutants in in vitro overexpression systems. Both overexpressed wildtype ADNP and all the different mutants were found to be confined to the nuclei in HEK293T cells; however, the distinctive pattern of nuclear bodies formed by the wildtype ADNP was either partially or entirely disrupted by the mutant proteins. Moreover, two variants of p.Y719* on the nuclear localization signal (NLS) of ADNP disrupted the nuclear expression pattern, predominantly manifesting in the cytoplasm in SH-SY5Y cells. LIMITATIONS: Our study was limited by a relatively small sample size and the absence of a longitudinal framework to monitor the progression of patient conditions over time. Additionally, we lacked in vivo evidence to further indicate the causal implications of the identified ADNP variants. CONCLUSIONS: Our study reported the first cohort of HVDAS patients in the Chinese population and provided systematic clinical presentations and laboratory examinations. Furthermore, we identified multiple genetic variants and validated them in vitro. Our findings offered valuable insights into the diverse genetic variants associated with HVDAS.


Asunto(s)
Trastorno del Espectro Autista , Discapacidad Intelectual , Neuroblastoma , Humanos , Niño , Discapacidad Intelectual/genética , Trastorno del Espectro Autista/genética , Células HEK293 , Factores de Transcripción , Proteínas del Tejido Nervioso , Proteínas de Homeodominio/genética
4.
Sci Total Environ ; 872: 162060, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-36754313

RESUMEN

Global warming threatens aquatic systems and organisms. Many studies have focused on the vulnerability and stress responses of aquaculture organisms to future thermal conditions. However, it may be of more practical significance to reveal their acclimation potential and mechanisms. In this study, the physiological, metabolic, and transcriptional responses to long-term temperature acclimation of northern and southern populations of Pacific abalone Haliotis discus hannai, a commercially important gastropod sensitive to environmental changes, were compared. This study conducted two common-garden experiments, including a thermostatic experiment in the lab and an aquaculture experiment on the farm. The abalone population cultured in warmer southern waters was tolerant of ongoing high temperatures, whereas the abalone population originally cultured in cooler northern waters exhibited vulnerability to high temperatures but could enhance its thermal tolerance through the process of natural selection in warmer southern waters. This difference was linked to divergence in the metabolic and transcriptional processes of the two populations. The tolerant population exhibited a greater capacity for carbohydrate and amino acid metabolism regulation and energy redistribution to cope with heat stress. This capacity may have been selected for, and accumulated, over many generations because the tolerant population originated from the intolerant population over two decades ago. This work provides insight into the vulnerability and acclimation potential of abalone to heat stress and discloses the molecular and metabolic traits underlying this phenomenon. Future research on the ability of abalone and other commercial shellfish species to acclimate to global warming should take this potential into account.


Asunto(s)
Gastrópodos , Animales , Gastrópodos/fisiología , Mariscos , Respuesta al Choque Térmico , Temperatura , Calor
5.
Neurobiol Stress ; 21: 100495, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36532375

RESUMEN

Stress-induced neuroinflammation is considered an important mechanism in the pathogenesis of depression. As immune effector cells in the brain, microglia play an essential role in neuroinflammation under stress, but the underlying mechanism remains controversial. Here, we performed RNA-seq and ATAC-seq to study microglia-specific epigenomic changes in mice after 12 weeks of exposure to mild stress. Our study revealed that chronic stress induced pronounced anxiety and depressive-like behavioral changes. However, microglia did not manifest a state of neuroinflammatory activation; instead, they displayed morphological changes characterized by hyper-ramification. Furthermore, we revealed large-scale transcriptional repression in microglia isolated from the stressed brain, including many interferon (IFN)-regulated genes (IRGs) and some encompassing DNA repeats. GSEA showed that the down-regulated genes were enriched in the IFN-mediated neuroimmune signaling pathways. In addition, integrative analysis with a published scRNA-seq dataset revealed that these down-regulated genes were enriched in a distinct subpopulation of "Interferon microglia". ATAC-seq analysis further showed that differential gene expression was positively correlated with the changes in chromatin accessibility, and the IFN-stimulated response element (ISRE) was enriched in the down-regulated ATAC-seq loci. Interestingly, this phenotype was not associated with the production of IFNs. Instead, the gene encoding Activating Transcription Factor 3 (ATF3) was significantly increased in the stressed microglia, which might contribute to the transcriptional repression of IRGs. Our study reported microglia-specific transcriptional repression of IRGs independent of the production of IFNs, providing some new insights into neuroimmune dysregulation under prolonged stress.

6.
Evol Appl ; 15(6): 992-1001, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35782008

RESUMEN

Aquaculture is one of the world's fastest-growing and most traded food industries, but it is under the threat of climate-related risks represented by global warming, marine heatwave (MHW) events, ocean acidification, and deoxygenation. For the sustainable development of aquaculture, selective breeding may be a viable method to obtain aquatic economic species with greater tolerance to environmental stressors. In this study, we estimated the heritability of heat tolerance trait of Pacific abalone Haliotis discus hannai, performed genome-wide association studies (GWAS) analysis for heat tolerance to detect single nucleotide polymorphisms (SNPs) and candidate genes, and assessed the potential of genomic selection (GS) in the breeding of abalone industry. A total of 1120 individuals were phenotyped for their heat tolerance and genotyped with 64,788 quality-controlled SNPs. The heritability of heat tolerance was moderate (0.35-0.42) and the predictive accuracy estimated using BayesB (0.55 ± 0.05) was higher than that using GBLUP (0.40 ± 0.01). A total of 11 genome-wide significant SNPs and 2 suggestive SNPs were associated with heat tolerance of abalone, and 13 candidate genes were identified, including got2,znfx1,l(2)efl, and lrp5. Based on GWAS results, the prediction accuracy using the top 5K SNPs was higher than that using randomly selected SNPs and higher than that using all SNPs. These results suggest that GS is an efficient approach for improving the heat tolerance of abalone and pave the way for abalone selecting breeding programs in rapidly changing oceans.

7.
Front Physiol ; 12: 683499, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34267674

RESUMEN

Phenotypic plasticity is an adaptive mechanism used by organisms to cope with environmental fluctuations. Pacific abalone (Haliotis discus hannai) are large-scale farmed in the temperate area of northern China and in the warmer waters of southern China. RNA-seq and comparative transcriptomic analysis here were performed to determine if the northern and southern populations have evolved divergent plasticity and if functional differences are associated with protein synthesis and growth-related biological progress. The DNA methylation (5mC) landscape of H. discus hannai from the two populations using whole genomic bisulfite sequencing (WGBS), exhibited different epigenetic patterns. The southern population had significant genomic hypo-methylation that may have resulted from long-term acclimation to heat stress. Combining 790 differentially expressed genes (DEGs) and 7635 differentially methylated genes (DMGs), we found that methylation within the gene body might be important in predicting abalone gene expression. Genes related to growth, development, transduction, and apoptosis may be regulated by methylation and could explain the phenotypic divergence of H. discus hannai. Our findings not only emphasize the significant roles of adaptive plasticity in the acclimation of H. discus hannai to high temperatures but also provide a new understanding of the epigenetic mechanism underlying the phenotypic plasticity in adaptation to climate change for marine organisms.

8.
Nat Commun ; 10(1): 4625, 2019 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-31604932

RESUMEN

Common carp (Cyprinus carpio) is an allotetraploid species derived from recent whole genome duplication and provides a model to study polyploid genome evolution in vertebrates. Here, we generate three chromosome-level reference genomes of C. carpio and compare to related diploid Cyprinid genomes. We identify a Barbinae lineage as potential diploid progenitor of C. carpio and then divide the allotetraploid genome into two subgenomes marked by a distinct genome similarity to the diploid progenitor. We estimate that the two diploid progenitors diverged around 23 Mya and merged around 12.4 Mya based on the divergence rates of homoeologous genes and transposable elements in two subgenomes. No extensive gene losses are observed in either subgenome. Instead, we find gene expression bias across surveyed tissues such that subgenome B is more dominant in homoeologous expression. CG methylation in promoter regions may play an important role in altering gene expression in allotetraploid C. carpio.


Asunto(s)
Carpas/genética , Genoma , Poliploidía , Animales , Evolución Molecular , Filogenia , Análisis de Secuencia de ARN
9.
Front Genet ; 10: 660, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31354795

RESUMEN

The common carp, Cyprinus carpio, is a cyprinid fish species cultured in Europe and Asia. It accounts for >70% of freshwater aquaculture production worldwide. We conducted a population genomics analysis on C. carpio using high-throughput SNP genotyping of 2,198 individuals from 14 populations worldwide to determine the genetic architecture of common carp populations and the genetic bases for environmental adaptation. Structure analyses including phylogeny and principal component analysis were also conducted, showing distinct geographical patterns in European and Asian populations. The linkage disequilibrium block average lengths of the 14 populations ranged from 3.94 kb to 36.67 kb. Genes within selective sweep regions were identified by genome scanning among the different populations, including gdf6a, bmpr1b, and opsin5. Gene Ontology and KEGG enrichment analyses revealed potential trait-related loci and genes associated with body shape, scaling patterns, and skin color. This population genomics analysis may provide valuable clues for future genome-assisted breeding of C. carpio.

11.
Mar Biotechnol (NY) ; 21(2): 262-275, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30783862

RESUMEN

The large yellow croaker (Larimichthys crocea) is the most economically important marine cage-farming fish in China in the past decade. However, the sustainable development of large yellow croaker aquaculture has been severely hampered by several diseases, of which, the white spot disease caused by ciliate protozoan parasite Cryptocaryon irritans ranks the most damaging disease in large yellow croaker cage farms. To better understand the genetic basis of parasite infection and disease resistance to C. irritans, it is vital to map the traits and localize the underlying candidate genes in L. crocea genome. Here, we constructed a high-density genetic linkage map using double-digest restriction-site associated DNA (ddRAD)-based high-throughput SNP genotyping data of a F1 mapping family, which had been challenged with C. irritans for resistant trait measure. A total of 5261 SNPs was grouped and oriented into 24 linkage groups (LGs), representing 24 chromosomes of L. crocea. The total genetic map length was 1885.67 cM with an average inter-locus distance of 0.36 cM. Quantitative trait loci (QTL) mapping identified seven significant QTLs in four LGs linked to C. irritans disease resistance. Candidate genes underlying disease resistance were identified from the reference genome, including ifnar1, ifngr2, ikbke, and CD112. Comparative genomic analysis between large yellow croaker and the four closely related species revealed high evolutionary conservation of chromosomes, though inter-chromosomal rearrangements do exist. Especially, the croaker genome structure was closer to the medaka genome than stickleback, indicating that the croaker genome might retain the teleost ancestral genome structure. The high-density genetic linkage map provides an important tool and resource for fine mapping, comparative genome analysis, and molecular selective breeding of large yellow croaker.


Asunto(s)
Infecciones por Cilióforos , Resistencia a la Enfermedad/genética , Ligamiento Genético , Perciformes/genética , Perciformes/parasitología , Animales , Acuicultura , Cilióforos , Enfermedades de los Peces/parasitología , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo
12.
Genomics ; 111(3): 267-276, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30445216

RESUMEN

Amur ide (Leuciscus waleckii) inhabits alkaline water in Lake Dali Nur and migrates to fresh water river for spawning every year. To investigate the potential genetic mechanisms underlying their alkaline acclimation, adaptation, and spawning migration, we performed differential gene expression analysis using high-throughput RNA-Seq data from liver of Amur ide samples collected before and after spawning migration. First, the short RNA-Seq reads were de novo assembled into 44,318 contigs, and provided the transcriptome reference sequences. Differential gene expression analysis identified 2575 genes with significant differential expression (p-value ≤.01, log2-fold-change ≥2). GO enrichment and KEGG pathway analyses were subsequently performed to determine gene functions and regulation. The results indicated that there were numerous differentially expressed genes involved in acid-base regulation, nitrogenous waste excretion, sexual maturation and reproduction, and stress response. These results provide fundamental information for further analyses of the physiological and molecular mechanisms underlying Amur ide alkaline acclimation, adaptation, and spawning migration.


Asunto(s)
Aclimatación , Migración Animal , Cyprinidae/genética , Transcriptoma , Animales , Cyprinidae/fisiología , Lagos , Ríos
13.
Front Genet ; 9: 448, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30356829

RESUMEN

Head size is important economic trait for many aquaculture fish which is directly linked to their carcass yield. The genetic basis of head size trait remains unclear in many widely cultured fish species. Common carp (Cyprinus carpio) is one of the most widely studied fish due to its importance on both economic and environmental aspects. In this study, we performed genome-wide association study using 433 Yellow River carp individuals from multiple families to identify loci and genes potentially associated with head size related traits including head length (HL), head length/body length ratio (HBR), eye diameter (ED), and eye cross (EC). QTL mapping was utilized to filter the effects of population stratification and improve power for the candidates identification in the largest surveyed family with a published genetic linkage map. Twelve SNPs showed significant for head size traits in GWAS and 18 QTLs were identified in QTL mapping. Our study combining both GWAS and QTL mapping could compensate the deficiency from each other and advance our understanding of head size traits in common carp. To acquire a better understanding of the correlation between head size and body growth, we also performed comparisons between QTLs of head size traits and growth-related traits. Candidate genes underlying head size traits were identified surrounding the significant SNPs, including parvalbumin, srpk2, fsrp5, igf1, igf3, grb10, igf1r, notch2, sfrp2. Many of these genes have been identified with potential functions on bone formation and growth. Igf1 was a putative gene associated with both head size and body growth in Yellow River carp. The teleost-specific igf3 was a candidate head size related gene, related to both HL and HBR. Our study also indicated the importance of Igf signaling pathway for both growth and head size determination in common carp, which could be potentially used in future selective breeding in common carp as well as other species.

14.
Mar Biotechnol (NY) ; 20(5): 573-583, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29882019

RESUMEN

Common carp (Cyprinus carpio) is one of the most widely studied fish species due to its great economic value and strong environmental adaptability. Scattered scale, a typical phenotype of the mirror carp that is derived from Europe, has never been observed in the Yellow River carp previously. We recently identified approximately one fourth of the F1 progenies displaying scattered scale in a full-sib Yellow River carp family in our breeding program, despite both parents that showed wild type with normal scale patterns. This family provides us unique materials to investigate the genetic basis underlying the abnormal scale mutant in Yellow River carp population. Genome-wide association study (GWAS) and association mapping were performed based on genome-wide single nucleotide polymorphisms (SNP) genotyped with common carp 250 K SNP genotyping array in 82 samples of the Yellow River carp family. We identified a 1.4 Mb genome region that was significantly associated with abnormal scattered scale patterns. We further identified a deletion mutation in fibroblast growth factor receptor 1 a1 (fgfr1a1) gene within this genome region. Amplification and sequencing analysis of this gene revealed a 311-bp deletion in intron 10 and exon 11, which proved that fgfr1a1 could be the causal gene responsible for abnormal scattered scale in the Yellow River carp family. Since similar fragment mutation with 306-bp and 310-bp deletions had been previously reported as causal mutation of scattered scale patterns in the mirror carp, we speculate that either the deletion mutation was introduced from Europe-derived mirror carp or the deletion independently occurred in the mutation hotspot in fgfr1a1 gene. The results provided insights into the genetic basis of scale pattern mutant in Yellow River carp population, which would help us to eliminate the recessive allele of the abnormal scale patterns in Yellow River carp population by molecular marker-assisted breeding.


Asunto(s)
Escamas de Animales/metabolismo , Secuencia de Bases , Carpas/genética , Proteínas de Peces/genética , Genoma , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Eliminación de Secuencia , Escamas de Animales/anomalías , Animales , Cruzamiento , China , Mapeo Cromosómico , Europa (Continente) , Exones , Femenino , Expresión Génica , Estudio de Asociación del Genoma Completo , Genotipo , Intrones , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Polimorfismo de Nucleótido Simple , Ríos
15.
Mar Biotechnol (NY) ; 20(1): 45-59, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29256104

RESUMEN

The marine species usually show high dispersal capabilities accompanied by high levels of gene flow. On the other hand, many physical barriers distribute along the continental marginal seas and may prevent dispersals and increase population divergence. These complexities along the continental margin generate serious challenges to population genetic studies of marine species. Chinese sea bass Lateolabrax maculatus distributes broad latitudinal gradient spanning from the tropical to the mid-temperate zones in the continental margin seas of the Northwest Pacific Ocean. Using the double digest restriction-site-associated DNA tag sequencing (ddRAD) approach, we genotyped 10,297 SNPs for 219 Chinese seabass individuals of 12 populations along the Chinese coast in the Northwest Pacific region. Genetic divergence among these populations was evaluated, and population structure was established. The results suggested that geographically distant populations in the Bohai Gulf and the Beibu Gulf retain significant genetic divergence, which are connected by a series of intermediate populations in between. The results also suggested that Leizhou Peninsula, Hainan Island, and Shandong Peninsula are major physical barriers and substantially block gene flow and genetic admixture of L. maculatus. We also investigated the potential genetic basis of local adaptation correlating with population differentiation of L. maculatus. The sea surface temperature is a significantly differentiated environmental factor for the distribution of L. maculatus. The correlation of water temperature and genetic variations in extensively distributed populations was investigated with Bayesian-based approaches. The candidate genes underlying the local selection in geographically divergent populations were identified and annotated, providing clues to understand the potential mechanisms of adaptive evolution. Overall, our genome scale population genetic analysis provided insight into population divergence and local adaptation of Chinese sea bass in the continental marginal seas along Chinese coast.


Asunto(s)
Lubina/genética , Genética de Población , Metagenómica , Adaptación Fisiológica/genética , Animales , Flujo Génico , Océano Pacífico , Filogeografía , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN
16.
Gigascience ; 6(4): 1-5, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28327946

RESUMEN

The Northern snakehead (Channa argus), a member of the Channidae family of the Perciformes, is an economically important freshwater fish native to East Asia. In North America, it has become notorious as an intentionally released invasive species. Its ability to breathe air with gills and migrate short distances over land makes it a good model for bimodal breath research. Therefore, recent research has focused on the identification of relevant candidate genes. Here, we performed whole genome sequencing of C. argus to construct its draft genome, aiming to offer useful information for further functional studies and identification of target genes related to its unusual facultative air breathing. Findings: We assembled the C. argus genome with a total of 140.3 Gb of raw reads, which were sequenced using the Illumina HiSeq2000 platform. The final draft genome assembly was approximately 615.3 Mb, with a contig N50 of 81.4 kb and scaffold N50 of 4.5 Mb. The identified repeat sequences account for 18.9% of the whole genome. The 19 877 protein-coding genes were predicted from the genome assembly, with an average of 10.5 exons per gene. Conclusion: We generated a high-quality draft genome of C. argus, which will provide a valuable genetic resource for further biomedical investigations of this economically important teleost fish.


Asunto(s)
Genoma , Genómica , Perciformes/genética , Animales , Biología Computacional/métodos , Tamaño del Genoma , Genómica/métodos , Anotación de Secuencia Molecular , Familia de Multigenes , Perciformes/clasificación , Filogenia , Secuencias Repetitivas de Ácidos Nucleicos , Análisis de Secuencia de ADN , Secuenciación Completa del Genoma
17.
Mol Biol Evol ; 34(1): 145-159, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28007977

RESUMEN

The Amur ide (Leuciscus waleckii) is a cyprinid fish that is widely distributed in Northeast Asia. The Lake Dali Nur population inhabits one of the most extreme aquatic environments on Earth, with an alkalinity up to 50 mmol/L (pH 9.6), thus providing an exceptional model with which to characterize the mechanisms of genomic evolution underlying adaptation to extreme environments. Here, we developed the reference genome assembly for L. waleckii from Lake Dali Nur. Intriguingly, we identified unusual expanded long terminal repeats (LTRs) with higher nucleotide substitution rates than in many other teleosts, suggesting their more recent insertion into the L. waleckii genome. We also identified expansions in genes encoding egg coat proteins and natriuretic peptide receptors, possibly underlying the adaptation to extreme environmental stress. We further sequenced the genomes of 10 additional individuals from freshwater and 18 from Lake Dali Nur populations, and we detected a total of 7.6 million SNPs from both populations. In a genome scan and comparison of these two populations, we identified a set of genomic regions under selective sweeps that harbor genes involved in ion homoeostasis, acid-base regulation, unfolded protein response, reactive oxygen species elimination, and urea excretion. Our findings provide comprehensive insight into the genomic mechanisms of teleost fish that underlie their adaptation to extreme alkaline environments.


Asunto(s)
Adaptación Fisiológica/genética , Evolución Biológica , Cyprinidae/genética , Animales , Asia , Evolución Molecular , Ambientes Extremos , Femenino , Perfilación de la Expresión Génica/métodos , Estudios de Asociación Genética , Genómica/métodos , Concentración de Iones de Hidrógeno , Lagos , Análisis de Secuencia de ADN/métodos , Estrés Fisiológico/genética , Transcriptoma
19.
Sci Rep ; 6: 26693, 2016 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-27225429

RESUMEN

High density genetic linkage maps are essential for QTL fine mapping, comparative genomics and high quality genome sequence assembly. In this study, we constructed a high-density and high-resolution genetic linkage map with 28,194 SNP markers on 14,146 distinct loci for common carp based on high-throughput genotyping with the carp 250 K single nucleotide polymorphism (SNP) array in a mapping family. The genetic length of the consensus map was 10,595.94 cM with an average locus interval of 0.75 cM and an average marker interval of 0.38 cM. Comparative genomic analysis revealed high level of conserved syntenies between common carp and the closely related model species zebrafish and medaka. The genome scaffolds were anchored to the high-density linkage map, spanning 1,357 Mb of common carp reference genome. QTL mapping and association analysis identified 22 QTLs for growth-related traits and 7 QTLs for sex dimorphism. Candidate genes underlying growth-related traits were identified, including important regulators such as KISS2, IGF1, SMTLB, NPFFR1 and CPE. Candidate genes associated with sex dimorphism were also identified including 3KSR and DMRT2b. The high-density and high-resolution genetic linkage map provides an important tool for QTL fine mapping and positional cloning of economically important traits, and improving common carp genome assembly.


Asunto(s)
Carpas/genética , Mapeo Cromosómico , Ligamiento Genético , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Animales , Pez Cebra/genética
20.
Fish Shellfish Immunol ; 54: 60-7, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27041666

RESUMEN

Scavenger receptors class A (SCARAs) is a subgroup of diverse families of pattern recognition receptors that bind a range of ligands, and play important roles in innate immune processes through pathogens detection, adhesion, endocytosis, and phagocytosis. However, most studies of SCARAs have focused on mammals, and much less is known of SCARAs in fish species. In this study, we identified 7 SCARAs across the common carp genome, which were classified into four subclasses according to comparative genomic analysis including sequence similarities analysis, gene structure and functional domain prediction. Further phylogenetic and syntenic analysis supported their annotation and orthologies. Through examining gene copy number of SCARA genes across several vertebrates, SCARA2, SCARA3 and SCARA4 were found have undergone gene duplication. The expression patterns of SCARAs in common carp were examined during early developmental stages, in healthy tissues, and after Aeromonas hydrophila infection. Most SCARA genes were ubiquitously expressed during common carp early developmental stages, and presented diverse patterns in various healthy tissues, with relatively high expression levels in spleen, liver, intestine, gill and brain, indicating their critical roles likely in maintaining homeostasis and host immune response activities. After A. hydrophila infection, most SCARA genes were up-regulated at 4 h post infection in mucosal tissue intestine, while generally up-regulated at 12 h post infection in spleen, suggesting a tissue-specific pattern of regulation. Taken together, all these results suggested that SCARA genes played important roles in host immune response to A. hydrophila infection in common carp, and provided important genomic resources for future studies on fish disease management.


Asunto(s)
Carpas/genética , Proteínas de Peces/genética , Expresión Génica , Genoma , Inmunidad Innata , Receptores Depuradores de Clase A/genética , Aeromonas hydrophila/fisiología , Animales , Carpas/crecimiento & desarrollo , Carpas/inmunología , Carpas/metabolismo , Enfermedades de los Peces/genética , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Proteínas de Peces/metabolismo , Infecciones por Bacterias Gramnegativas/genética , Infecciones por Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Gramnegativas/microbiología , Infecciones por Bacterias Gramnegativas/veterinaria , Receptores Depuradores de Clase A/metabolismo , Análisis de Secuencia de ADN/veterinaria , Sintenía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...