Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Food Chem ; 450: 139314, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-38636383

RESUMEN

Food waste occurs frequently worldwide, though hunger and malnutrition issues have received global attention. Short-term spoilage of perishable foods causes a significant proportion of food waste. Developing simple, green, and low-cost strategies to preserve the freshness of perishable foods is important to address this issue and improving food safety. By using strawberries as the model perishable fruit, this study reported a pectin/carboxy methyl starch sodium (PC) based coating using epigallocatechin gallate-loaded eggshell powder (ES@EGCG) as the functional fillers. In comparison to PC coating, the PC-ES@EGCG coating displayed much-enhanced performance, such as enhanced mechanical (2 folds) and barrier (water vapor & oxygen) properties. This composite coating reduced the weight loss of strawberries from over 60% to around 30% after 7-day storage. Coated strawberries exhibit better freshness retention, which achieves the purpose of preserving strawberries during storage. This study provided a cost-effective and eco-friendly coating strategy for reducing food waste.


Asunto(s)
Conservación de Alimentos , Fragaria , Pectinas , Almidón , Fragaria/química , Pectinas/química , Almidón/química , Conservación de Alimentos/métodos , Conservación de Alimentos/instrumentación , Cáscara de Huevo/química , Animales , Frutas/química , Catequina/química , Catequina/análogos & derivados
2.
Small ; : e2311675, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38441359

RESUMEN

The high oxygen electrocatalytic overpotential of flexible cathodes due to sluggish reaction kinetics result in low energy conversion efficiency of wearable zinc-air batteries (ZABs). Herein, lignin, as a 3D flexible carbon-rich macromolecule, is employed for partial replacement of polyacrylonitrile and constructing flexible freestanding air electrodes (FFAEs) with large amount of mesopores and multi-hollow channels via electrospinning combined with annealing strategy. The presence of lignin with disordered structure decreases the graphitization of carbon fibers, increases the structural defects, and optimizes the pore structure, facilitating the enhancement of electron-transfer kinetics. This unique structure effectively improves the accessibility of graphitic-N/pyridinic-N with oxygen reduction reaction (ORR) activity and pyridinic-N with oxygen evolution reaction (OER) activity for FFAEs, accelerating the mass transfer process of oxygen-active species. The resulting N-doped hollow carbon fiber films (NHCFs) exhibit superior bifunctional ORR/OER performance with a low potential difference of only 0.60 V. The rechargeable ZABs with NHCFs as metal-free cathodes possess a long-term cycling stability. Furthermore, the NHCFs can be used as FFAEs for flexible ZABs which have a high specific capacity and good cycling stability under different bending states. This work paves the way to design and produce highly active metal-free bifunctional FFAEs for electrochemical energy devices.

3.
Int J Biol Macromol ; 261(Pt 2): 129822, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38307437

RESUMEN

The impact of citric acid, carboxymethyl cellulose, carboxymethyl starch, sodium trimetaphosphate, or soybean protein on the crosslinking of starch-based films was examined. These crosslinking starch films were then used to create pH-sensitive food labels using a casting method. Blueberry anthocyanins were incorporated into these smart labels as a pH-sensitive colorimetric sensor. The mechanical properties, moisture resistance, and pH responsiveness of these smart labels were then examined. Crosslinking improved the mechanical properties and pH sensitivity of the labels. These different crosslinking agents also affected the hydrophobicity of the labels to varying degrees. Soybean protein was the only additive that led to labels that could sustain their structural integrity after immersion in water for 12 h. Because it increased the hydrophobicity of the labels, which decreased their water vapor permeability, moisture content, swelling index, and water solubility by 47 %, 29 %, 52 % and 10 %, respectively. The potential of using these labels to monitor the freshness of chicken breast was then examined. Only the films containing soybean protein exhibited good pH sensitivity, high structural stability, and low pigment leakage. This combination of beneficial attributes suggests that the composite films containing starch and soybean protein may be most suitable for monitoring meat freshness.


Asunto(s)
Antocianinas , Proteínas de Soja , Antocianinas/química , Carne , Permeabilidad , Almidón/química , Embalaje de Alimentos , Concentración de Iones de Hidrógeno
4.
Small ; 20(1): e2304196, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37665232

RESUMEN

Nanofiber is the critical building block for many biological systems to perform various functions. Artificial assembly of molecules into nanofibers in a controllable and reversible manner will create "smart" functions to mimic those of their natural analogues and fabricate new functional materials, but remains an open challenge especially for nature macromolecules. Herein, the controllable and reversible assembly of nanofiber (CSNF) from natural macromolecules with oppositely charged groups are successfully realized by protonation and deprotonation of charged groups. By controlling the electrostatic interaction via protonation and deprotonation, the size and morphology of the assembled nanostructures can be precisely controlled. A strong electrostatic interaction contributes to large nanofiber with high strength, while poor electrostatic interaction produces finer nanofiber or nanoparticle. And especially, the assembly, disassembly, and reassembly of the nanofiber occurs reversibly through protonation and deprotonation, thereby paving a new way for precisely controlling the assembly process and structure of nanofiber. The reversible assembly allows the nanostructure to dynamically reorganize in response to subtle perturbation of environment. The as-prepared CSNF is mechanical strong and can be used as a nano building block to fabricate high-strength film, wire, and straw. This study offers many opportunities for the biomimetic synthesis of new functional materials.

5.
Small ; 20(15): e2307943, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38037480

RESUMEN

The rational design of bifunctional oxygen electrocatalysts with unique morphology and luxuriant porous structure is significant but challenging for accelerating the reaction kinetics of rechargeable Zn-air batteries (ZABs). Herein, zinc-mediated Fe, N-codoped carbon nanocages (Zn-FeNCNs) are synthesized by pyrolyzing the polymerized iron-doped polydopamine on the surface of the ZIF-8 crystal polyhedron. The formation of the chelate between polydopamine and Fe serves as the covering layer to prevent the porous carbon nanocages from collapsing and boosts enough exposure and utilization of metal-based active species during carbonization. Furthermore, both the theoretical calculation and experimental results show that the strong interaction between polyhedron and polydopamine facilitates the evolution of high-activity zinc-modulated FeNx sites and electron transportation and then stimulates the excellent bifunctional catalytic activity for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). As expected, the Zn-air battery with Zn-FeNCNs as an air cathode displays a superior power density (256 mW cm-2) and a high specific capacity (813.3 mA h gZn-1), as well as long-term stability over 1000 h. Besides, when this catalyst is applied to the solid-state battery, the device exhibited outstanding mechanical stability and a high round-trip efficiency under different bending angles.

6.
Crit Rev Food Sci Nutr ; : 1-15, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37933826

RESUMEN

The development of a healthier and more sustainable food supply is a main concern of consumers, industry, governments, and international institutions. Foods containing high levels of rapidly digestible starches have been linked to a rise in the number of people suffering from diet-related chronic diseases. Consequently, there is interest in reducing the digestibility of starch to improve their healthiness. The ability of natural additives including proteins, dietary fibers, and polyphenols, and sustainable processing technologies such as high-intensity ultrasonic, pulsed electric field, non-thermal plasma, γ-ray irradiation that regulate reduce starch digestibility in foods are reviewed. The potential mechanisms of action, advantages, and disadvantages of each approach at inhibiting starch digestibility is highlighted. The potential for commercializing these technologies is discussed, and areas where further research are required are emphasized. Natural additives and sustainable processing operations can effectively reduce the digestibility of starch and inhibit postprandial sugar "spikes" in the bloodstream by adjusting the structural changes, which can be used to create healthier and more sustainable foods and have broad application prospects.

7.
Int J Biol Macromol ; 253(Pt 5): 127165, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37778592

RESUMEN

Starch has great potential to replace petroleum-based plastics in food packaging applications. However, starch films often exhibit poor mechanical and barrier properties, and are vulnerable to moisture and bacterial contamination. This study proved that the incorporation of eggshell powder (ES) enhanced the hydrogen bonding in starch-based films significantly, which contributed to improved tensile strength, Young's modulus, and water resistance of the films. The performance of ES-incorporated films could be optimized by adjusting the size, concentration, and surface property of ES in the film matrix. Notably, adsorbing epigallocatechin gallate (EGCG) on the surface of porous ES contributed to enhanced dispersibility of the fillers in the film matrix, which increased the tortuous path of light, water vapor, and oxygen have to take through the films, resulting in increased UV screening performance, water vapor and oxygen barrier property of the films by 60 %, 7.2 %, and 27.9 %, respectively. Meanwhile, loading EGCG in ES also enable superior antibacterial activity of the final films. This study suggests that eggshell fillers offer a sustainable means of improving the functional performance of starch-based films, which may increase their application as packaging materials in the food industry.


Asunto(s)
Almidón , Vapor , Animales , Cáscara de Huevo , Resistencia a la Tracción , Embalaje de Alimentos/métodos , Oxígeno , Permeabilidad
8.
Crit Rev Food Sci Nutr ; : 1-15, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37724782

RESUMEN

Colloidal delivery systems are widely used in the food industry to enhance the dispersibility, stability, efficacy, or bioavailability. However, when exposed to the high temperature, delivery systems are often prone to degradation, which limits its application in thermal processing. In this paper, the effects of thermal processing on the performance of traditional protein-based or starch-based delivery systems are firstly described, including the molecular structure changes of proteins, starches or lipids, and the degradation of embedded substances. These effects are unfavorable to the application of the delivery system in thermal processing. Then, strategies of improving the heat resistance of food grade colloid delivery system and their use in frying, baking and cooking food are mainly introduced. The heat resistance of the delivery system can be improved by a variety of strategies, including the development of new heat-resistant materials, the addition of heat-resistant coatings to the surface of delivery systems, the cross-linking of proteins or starches using cross-linking agents, the design of particle structures, the use of physical means such as ultrasound, or the optimization of the ingredient formula. These strategies will help to expand the application of heat-resistant delivery systems so that they can be used in real thermal processing.

9.
Small ; 19(48): e2303864, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37525330

RESUMEN

Silicon (Si) is regarded as one of the most promising anode materials for high-performance lithium-ion batteries (LIBs). However, how to mitigate its poor intrinsic conductivity and the lithiation/delithiation-induced large volume change and thus structural degradation of Si electrodes without compromising their energy density is critical for the practical application of Si in LIBs. Herein, an integration strategy is proposed for preparing a compact micron-sized Si@G/CNF@NC composite with a tight binding and dual-encapsulated architecture that can endow it with superior electrical conductivity and deformation resistance, contributing to excellent cycling stability and good rate performance in thick electrode. At an ultrahigh mass loading of 10.8 mg cm-2 , the Si@G/CNF@NC electrode also presents a large initial areal capacity of 16.7 mA h cm-2 (volumetric capacity of 2197.7 mA h cm-3 ). When paired with LiNi0.95 Co0.02 Mn0.03 O2 , the pouch-type full battery displays a highly competitive gravimetric (volumetric) energy density of ≈459.1 Wh kg-1 (≈1235.4 Wh L-1 ).

10.
Crit Rev Food Sci Nutr ; : 1-19, 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37485927

RESUMEN

Anthocyanins have attracted a lot of attention in the fields of natural pigments, food packaging, and functional foods due to their color, antioxidant, and nutraceutical properties. However, the poor chemical stability and low bioavailability of anthocyanins currently limit their application in the food industry. Various methods can be used to modify the structure of anthocyanins and thus improve their stability and bioavailability characteristics under food processing, storage, and gastrointestinal conditions. This paper aims to review in vitro modification methods for altering the molecular structure of anthocyanins, as well as their resulting improved properties such as color, stability, solubility, and antioxidant properties, and functional applications as pigments, sensors and functional foods. In industrial production, by mixing co-pigments with anthocyanins in food systems, the color and stability of anthocyanins can be improved by using non-covalent co-pigmentation. By acylation of fatty acids and aromatic acids with anthocyanins before incorporation into food systems, the surface activity of anthocyanins can be activated and their antioxidant and bioactivity can be improved. Various other chemical modification methods, such as methylation, glycosylation, and the formation of pyranoanthocyanins, can also be utilized to tailor the molecular properties of anthocyanins expanding their range of applications in the food industry.

11.
Crit Rev Food Sci Nutr ; : 1-15, 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37486163

RESUMEN

Polyphenols have a variety of physiological activities, including antioxidant, antimicrobial, and anti-inflammatory properties. However, their applications are often limited because due to the instability of polyphenols. Encapsulation technologies can be employed to overcome these problems and increase the utilization of polyphenols. In this article, the utilization of protein-based nanoparticles for encapsulating polyphenols is reviewed due to their good biocompatibility, biodegradability, and functional attributes. Initially, the various kinds of animal and plant proteins available for forming protein nanoparticles are discussed, as well as the fabrication methods that can be used to assemble these nanoparticles. The molecular interaction mechanisms between proteins and polyphenols are then summarized. Applications of protein-based nanoparticles for encapsulating polyphenols are then discussed, including as nutrient delivery systems, in food packaging materials, and in the creation of functional foods. Finally, areas where further research is need on the development, characterization, and application of protein-based polyphenol-loaded nanoparticles are highlighted.

12.
Crit Rev Food Sci Nutr ; : 1-15, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37129300

RESUMEN

People are exploring the potential application of 3D printing in food, biomedicine and environment, but it is urgent to find suitable bio-ink. Bio-ink compounded with starch and hydrocolloid can not only improve the rheology, structure and printability of starch-based edible bio-ink, but also endow it with other functional characteristics, so that it can be applied to food, biomedicine and even the environment, and meet the strategic needs of national health, green and sustainable development. In this paper, hydrocolloids are reviewed as potential means to regulate the physicochemical properties of starch, which endows it with good printability and presents excellent printing products. The specific applications of the bio-ink in the fields of food, biomedicine and environment in hypoglycemic, lipid-lowering, swallowable food, delivery, intelligent materials, and bio-sensor are also discussed. Then, the challenges and future development trends of realizing large-scale application are prospected. Proper physicochemical properties of starch-hydrocolloid are positively correlated with printability. The presentation of excellent printability has realized the application in different fields, not only satisfies most people, but also create benefits for some specific people. This review is expected to provide some theoretical guidance for the further development of 3D printing technology and its large-scale application.

13.
Adv Mater ; 35(25): e2300109, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37009654

RESUMEN

Maintaining a steady affinity between gallium-based liquid metals (LM) and polymer binders, particularly under continuous mechanical deformation, such as extrusion-based 3D printing or plating/stripping of Zinc ion (Zn2+ ), is very challenging. Here, an LM-initialized polyacrylamide-hemicellulose/EGaIn microdroplets hydrogel is used as a multifunctional ink to 3D-print self-standing scaffolds and anode hosts for Zn-ion batteries. The LM microdroplets initiate acrylamide polymerization without additional initiators and cross-linkers, forming a double-covalent hydrogen-bonded network. The hydrogel acts as a framework for stress dissipation, enabling recovery from structural damage due to the cyclic plating/stripping of Zn2+ . The LM-microdroplet-initialized polymerization with hemicelluloses can facilitate the production of 3D printable inks for energy storage devices.

14.
Adv Mater ; 35(15): e2209948, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36652951

RESUMEN

Single-atom catalysts (SACs) show great potential for rechargeable Zn-air batteries (ZABs); however, scalable production of SACs from sustainable resources is difficult owing to poor control of the local coordination environment. Herein, lignosulfonate, a by-product of the papermaking industry, is utilized as a multifunctional bioligand for the mass production of SACs with highly active MN4 S sites (M represents Fe, Cu, and Co) via strong metalnitrogen/sulfur coordination. This effectively adjusts the charge distribution and promotes the catalytic performance, leading to highly durable and excellent performance in oxygen reduction and evolution reactions for ZABs. This study paves the way for the industrial production of cost-effective SACs in a sustainable manner.

15.
Food Funct ; 13(22): 11652-11663, 2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36278431

RESUMEN

Oral administration of combinations of specific nutrients and nutraceuticals can provide synergistic health benefits to humans. In this work, zein/carboxymethyl cellulose composite nanoparticles were successfully prepared using antisolvent precipitation methods. Zein/carboxymethyl cellulose nanoparticles with the smallest size (204.6 nm) were formed when the mass ratio of zein to CMC was 2 : 1. Hydrogen bonding and hydrophobic interactions were dominant binding forces to stabilize the composite nanoparticles. Quercetin and resveratrol were then encapsulated within these nanocarriers, which improved their resistance to both light and thermal degradation. Encapsulation of the nutraceuticals was shown to delay their release under simulated gastrointestinal conditions, which may be beneficial for some applications. Moreover, encapsulation increased the in vitro bioaccessibility of the quercetin and resveratrol. Our results indicate that zein/carboxymethyl cellulose nanoparticles can be used to co-deliver combinations of bioactive compounds, which may be useful for the development of functional foods, supplements, and pharmaceuticals.


Asunto(s)
Nanopartículas , Zeína , Humanos , Zeína/química , Carboximetilcelulosa de Sodio , Resveratrol , Quercetina , Tamaño de la Partícula , Nanopartículas/química , Digestión
16.
Foods ; 11(18)2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36140956

RESUMEN

In this work, rutin (RT)-loaded zein-carboxymethyl starch (CMS) nanoparticles were successfully prepared by the antisolvent precipitation method. The effect of CMS on composite nanoparticles at different concentrations was studied. When the ratio of zein-RT-CMS was 10:1:30, the encapsulation efficiency (EE) was the highest, reaching 73.5%. At this ratio, the size of the composite nanoparticles was 196.47 nm, and the PDI was 0.13, showing excellent dispersibility. The results of fluorescence spectroscopy, FTIR, XRD, and CD showed that electrostatic interaction, hydrogen bonding, and hydrophobic interaction were the main driving forces for the formation of nanoparticles. It can be seen from the FE-SEM images that the zein-RT-CMS nanoparticles were spherical. With the increase in the CMS concentration, the particles gradually embedded in the cross-linked network of CMS (10:1:50). After RT was loaded on zein-CMS nanoparticles, the thermal stability and pH stability of RT were improved. The results showed that zein-CMS was an excellent encapsulation material for bioactive substances.

17.
ACS Nano ; 16(9): 14723-14736, 2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36001805

RESUMEN

Two-dimensional (2D) material-based hydrogels have been widely utilized as the ink for extrusion-based 3D printing in various electronics. However, the viscosity of the hydrogel ink is not high enough to maintain the self-supported structure without architectural deformation. It is also difficult to tune the microstructure of the printed devices using a low-viscosity hydrogel ink. Herein, by mimicking a phospholipid bilayer in a cytomembrane, the amphiphilic surfactant nonaethylene glycol monododecyl ether (C12E9) was incorporated into MXene hydrogel. The incorporation of C12E9 offers amphiphilicity to the MXene flakes and produces a 3D interlinked network of the MXene flakes. The 3D interlinked network offers a high-viscosity, homogenized flake distribution and enhanced printability to the ink. This ink facilitates the alignment of the MXene flakes during extrusion as well as the formation of the aligned micro- and sub-microsized porous structures, leading to the improved electrochemical performance of the printed microsupercapacitor. This study provides an example for the preparation of microelectronics with tunable microstructures.

18.
Crit Rev Food Sci Nutr ; : 1-16, 2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-35997260

RESUMEN

Three-dimensional (3D) printing has attracted more attention in food industry because of its potential advantages, including the ability to create customized products according to individual's sensory or nutritional requirements. However, the production of high-quality 3D printed foods requires the availability of edible bio-inks with the required physicochemical and sensory attributes. Starch, as one of the important sources of dietary energy, is widely used in food processing and is considered as one kind of versatile polymers. It is not only because starch has low prices and abundant sources, but also because desirable modified starch can be obtained by altering its physicochemical properties through physical, chemical and enzymatic methods. This article focuses on the utilization of starch as materials to create food-grade bio-inks. Initially, several kinds of commonly used 3D printers are discussed. The factors affecting the printing quality of starch-based materials and improvement methods are then reviewed, as well as areas where future researches are required. The applications of 3D printed starch-based materials in food industry are also introduced. Overall, starch appears to be one kind of useful substances for creating edible bio-inks that can be utilized within 3D food printing applications to create a wide variety of food products.

19.
Angew Chem Int Ed Engl ; 61(31): e202206050, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35582843

RESUMEN

Despite the fact that high-valent nickel-based oxides exhibit promising catalytic activity for the urea oxidation reaction (UOR), the fundamental questions concerning the origin of the high performance and the structure-activity correlations remain to be elucidated. Here, we unveil the underlying enhanced mechanism of UOR by employing a series of prepared cation-vacancy controllable LiNiO2 (LNO) model catalysts. Impressively, the optimized layered LNO-2 exhibits an extremely low overpotential at 10 mA cm-2 along with excellent stability after the 160 h test. Operando characterisations combined with the theoretical analysis reveal the activated lattice oxygen in layered LiNiO2 with moderate cation vacancies triggers charge disproportion of the Ni site to form Ni4+ species, facilitating deprotonation in a lattice oxygen involved catalytic process.

20.
ACS Appl Mater Interfaces ; 13(47): 56638-56644, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34786928

RESUMEN

Magnetic tunnel junctions (MTJs) with tunable tunneling magnetoresistances (TMR) have already been proven to have great potential for spintronics. Especially, when ferroelectric materials are used as insulating barriers, more novel functions of MTJs can be realized due to interface magnetoelectric coupling. Here, we demonstrate a very large ferroelectric modulation of TMR (as high as 570% in low-resistance state) in the ferroelectric/magnetic La0.5Sr0.5MnO3/BaTiO3 (LSMO/BTO) junctions and find robust interfacial electronic and magnetic reconstructions via ferroelectric polarization switching. Through electrical, magnetic, and optical measurements combined with X-ray absorption and magnetic circular dichroism, we reveal that the interfacial electronic and magnetic (ferromagnetic/antiferromagnetic phase transition) reconstructions originate from strong electromagnetic coupling between BTO and LSMO at the interface and are driven by the modulation of hole/electron doping at the interface of LSMO/BTO through ferroelectric polarization switching. As a result, the ferroelectrically controlled interface barrier height and width and spin filter effect enable a giant electrical modulation of TMR. Our results shed new light on the intrinsic mechanisms governing magnetoelectric coupling and offering a new route to enhance magnetoelectric coupling for spin control in spintronic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA