Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Antioxidants (Basel) ; 13(4)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38671900

RESUMEN

Aflatoxin (AFT) contamination poses a significant global public health and safety concern, prompting widespread apprehension. Of the various AFTs, aflatoxin B1 (AFB1) stands out for its pronounced toxicity and its association with a spectrum of chronic ailments, including cardiovascular disease, neurodegenerative disorders, and cancer. Lycopene, a lipid-soluble natural carotenoid, has emerged as a potential mitigator of the deleterious effects induced by AFB1 exposure, spanning cardiac injury, hepatotoxicity, nephrotoxicity, intestinal damage, and reproductive impairment. This protective mechanism operates by reducing oxidative stress, inflammation, and lipid peroxidation, and activating the mitochondrial apoptotic pathway, facilitating the activation of mitochondrial biogenesis, the endogenous antioxidant system, and the nuclear factor erythroid 2-related factor 2 (Nrf2)/kelch-like ECH-associated protein 1 (KEAP1) and peroxisome proliferator-activated receptor-γ coactivator-1 (PGC-1) pathways, as well as regulating the activities of cytochrome P450 (CYP450) enzymes. This review provides an overview of the protective effects of lycopene against AFB1 exposure-induced toxicity and the underlying molecular mechanisms. Furthermore, it explores the safety profile and potential clinical applications of lycopene. The present review underscores lycopene's potential as a promising detoxification agent against AFB1 exposure, with the intent to stimulate further research and practical utilization in this domain.

2.
Foods ; 13(8)2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38672866

RESUMEN

Two novel dipeptidyl peptidase IV (DPP-IV) inhibitory peptides (YPF and LLLP) were discovered from goat milk protein by peptidomics, in silico analysis, and in vitro assessment. A total of 698 peptides (<23 AA) were successfully identified by LC-MS/MS from goat milk hydrolysates (hydrolyzed by papaian plus proteinase K). Then, 105 potential DPP-IV inhibitory peptides were screened using PeptideRanker, the ToxinPred tool, Libdock, iDPPIV-SCM, and sequence characteristics. After ADME, physicochemical property evaluation, and a literature search, 12 candidates were efficiently selected and synthesized in vitro for functional validation. Two peptides (YPF and LLLP) were found to exert relatively high in vitro chemical system (IC50 = 368.54 ± 12.97 µM and 213.99 ± 0.64 µM) and in situ (IC50 = 159.46 ± 17.40 µM and 154.96 ± 8.41 µM) DPP-IV inhibitory capacities, and their inhibitory mechanisms were further explored by molecular docking. Our study showed that the formation of strong non-bonding interactions with the core residues from the pocket of DPP-IV (such as ARG358, PHE357, GLU205, TYR662, TYR547, and TYR666) might primarily account for the DPP-IV inhibitory activity of two identified peptides. Overall, the two novel DPP-IV inhibitory peptides rapidly identified in this study can be used as functional food ingredients for the control of diabetes.

3.
J Agric Food Chem ; 72(13): 6803-6814, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38507708

RESUMEN

Neurodegenerative diseases pose a growing global health challenge, with limited effective therapeutic options. Mitochondrial dysfunction, oxidative stress, neuroinflammation, apoptosis, and autophagy are common underlying mechanisms in these diseases. Thymol is a phenolic monoterpene compound that has gained attention for its diverse biological properties, including antioxidant, anti-inflammatory, and immunomodulatory activities. Thymol supplementation could provide potential neuroprotection and improve cognitive deficits, depressant-like effects, learning, and memory impairments in rodents. Mechanistic investigations reveal that the neuroprotective effects of thymol involve the improvement of oxidative stress, mitochondrial dysfunction, and inflammatory response. Several signaling pathways, including mitochondrial apoptotic, NF-κB, AKT, Nrf2, and CREB/BDNF pathways are also involved. In this review, the neuroprotective effects of thymol, the potential molecular mechanisms, safety, applications, and current challenges toward development as a neuroprotective agent were summarized and discussed. We hope that this review provides valuable insights for the further development of this promising natural product as a promising neuroprotective agent.


Asunto(s)
Enfermedades Mitocondriales , Fármacos Neuroprotectores , Humanos , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Timol/farmacología , Transducción de Señal , Antioxidantes/farmacología , Antioxidantes/metabolismo , Estrés Oxidativo , Enfermedades Mitocondriales/tratamiento farmacológico
4.
Foods ; 13(3)2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38338537

RESUMEN

This investigation aimed to assess the effects of whey protein hydrolysate (WPH) on the oxidative stability of protein and the ability of Scomberomorus niphoniu surimi balls to retain water after repeated freeze-thaw (F-T) cycles. Ten percent natural whey peptides (NWP), 5% WPH, 10% WPH, 15% WPH, 0.02% butyl hydroxyl anisole (BHA), and a control group that did not receive any treatment were the six groups that were employed in the experiment. The cooking loss, water retention, total sulfhydryl content, and carbonyl content of each group were all measured. Notably, it was found that the surimi balls' capacity to hold onto water and fend off oxidation was enhanced in a dose-dependent manner by the addition of WPH. Furthermore, the results showed that the 15% WPH added to the surimi balls effectively decreased protein oxidation in the F-T cycles and ameliorated the texture deterioration of surimi balls induced by repeated F-T, laying a theoretical foundation for the industrial application of WPH in surimi products.

5.
Int J Biol Macromol ; 259(Pt 1): 129191, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38184042

RESUMEN

Dipeptidyl peptidase IV (DPP-IV) inhibitory peptides were screened and identified from yak hemoglobin for the first time by in silico analysis, molecular docking, and in vitro evaluation. Results showed that yak hemoglobin had a high potential to produce DPP-IV inhibitory peptides based on the sequence alignment and bioactive potential evaluation. Furthermore, "pancreatic elastase + stem bromelain" was the optimal combined-enzymatic strategy by simulated proteolysis. Additionally, 25 novel peptides were found from its simulated hydrolysate, among which 10 peptides had high binding affinities with DPP-IV by molecular docking. Most of these peptides were also in silico characterized with favorable physicochemical properties and biological potentials, including relatively low molecular weight, high hydrophobicity, several net charges, good water solubility, nontoxicity, acceptable sensory quality, and good human intestinal absorption. Finally, six novel DPP-IV inhibitory peptides were identified via in vitro assessment, among which EEKA (IC50 = 235.26 µM), DEV (IC50 = 339.45 µM), and HCDKL (IC50 = 632.93 µM) showed the strongest capacities. The hydrogen bonds and electrostatic attractions formed with core residues within the S2 pocket of DPP-IV could be mainly responsible for their inhibition performances. This work provided a time-saving method and broadened application for yak by-products development as sources of functional foods.


Asunto(s)
Dipeptidil Peptidasa 4 , Inhibidores de la Dipeptidil-Peptidasa IV , Animales , Bovinos , Humanos , Simulación del Acoplamiento Molecular , Dipeptidil Peptidasa 4/química , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Inhibidores de la Dipeptidil-Peptidasa IV/química , Péptidos/química , Hemoglobinas
6.
Food Chem ; 442: 138478, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38278102

RESUMEN

The effects of different concentrations of catechin on the stability of myofibrillar protein-soybean oil emulsions and the related mechanisms were investigated. Adding 10 µmol/g catechin had no obvious effects on the emulsion stability and myosin structure, but 50, 100 and 200 µmol/g catechin decreased the emulsion stability. The microstructure observations showed that 10 µmol/g catechin caused a dense and uniform emulsion to form, whereas 50, 100 and 200 µmol/g catechin induced the merging of oil droplets. The addition of 50, 100 and 200 µmol/g catechin caused a decline in both the total sulfhydryl content and surface hydrophobicity, suggesting protein aggregation, which decreased the adsorption capacity of myosin and the elasticity of interfacial film. These results suggested that higher concentrations of catechin were detrimental to the emulsifying properties of myosin and that the dose should be considered when it is used as an antioxidant.


Asunto(s)
Catequina , Aceite de Soja , Emulsiones/química , Aceite de Soja/química , Catequina/química , Miosinas , Agua/química
7.
Bioorg Med Chem Lett ; 98: 129591, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38097141

RESUMEN

The ß-catenin/B-cell lymphoma 9 (BCL9) protein-protein interaction (PPI) is a potential target for aberrantly active Wnt/ß-catenin signaling which actively participates in initiating and progressing of many cancers. Herein, we discovered novel 8-substituted quercetin derivatives with potential inhibitory activities targeting ß-catenin/BCL9 PPI. Among all the derivatives, compound B4 displayed the most promising PPI inhibitory activity with an IC50 value of 2.25 µM in a competitive fluorescence polarization assay and a KD value of 1.44 µM for the ß-catenin protein. Furthermore, B4 selectively inhibited the growth of colorectal cancer (CRC) cells, suppressed the transactivation of Wnt signaling, and downregulated the expression of oncogenic Wnt target gene. Especially, B4 showed potent anti-CRC activity in vivo with the tumor growth inhibition (TGI) of 75.99 % and regulated the tumor immune microenvironment.


Asunto(s)
Neoplasias Colorrectales , Linfoma de Células B , Neoplasias , Quercetina , Humanos , beta Catenina/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular , Neoplasias Colorrectales/tratamiento farmacológico , Linfoma de Células B/tratamiento farmacológico , Proteínas de Neoplasias/metabolismo , Quercetina/farmacología , Microambiente Tumoral , Vía de Señalización Wnt
8.
Foods ; 12(24)2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38137268

RESUMEN

Repeated freeze-thaw (FT) cycles can have an impact on surimi quality. In this study, we used 0.02% BHA as a positive control group. We examined the effects of different concentrations (0%, 5%, 10%, and 15%) of whey protein hydrolysate (WPH) on surimi, focusing on alterations in color metrics (L* for brightness, a* for red-green, b* for yellow-blue, and overall whiteness), textural characteristics, and antioxidant capacity during various freeze-thaw (FT) cycles. The results showed that the lipid oxidant values of surimi, as well as its a* and b* values, rose as the number of FT cycles increased; whereas the adhesiveness, resilience, gumminess, and shear force dropped, as did L* and the whiteness values, leading to an overall darkening of color and gloss. By contrast, the study found that the addition of WPH could effectively slow down the decrease of surimi textural stability after repeated freeze-thawing, with the textural stability of the group with 15% WPH being significantly superior to those of the other groups (p < 0.05). Under the same number of cycles, adding 15% WPH to the experimental group could successfully lower total volatile basic nitrogen (TVB-N) and effectively increase the antioxidant activity of surimi. This finding suggested that 15% WPH had the greatest effect on increasing surimi FT stability. To conclude, it was proved that WPH can be added to frozen surimi and improve its quality.

9.
Foods ; 12(19)2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37835250

RESUMEN

This study evaluated the effect of FI (Fraction I, molecular weight < 1 kDa), which is separated from natural whey protein, on the antioxidant activity, sensory quality, color, texture characteristics, and microbial growth of pork balls during repeated freeze-thaw cycles (F-T cycles). The results indicated that pork balls mixed with FI significantly improved in quality after repeating the F-T cycle, especially with the addition of 10% FI. The quality was improved significantly after repeated F-T cycles by adding 10% FI, and the antioxidant activity after seven F-T cycles decreased by 40.78%, a similar result to that obtained with the addition of 0.02% BHA. In addition, FI effectively reduced the sensory damage of pork balls caused by repeated freezing-thawing and also significantly inhibited the growth of microorganisms. In summary, FI not only has excellent antioxidant capacity under repeated freeze-thaw conditions but also has significant antibacterial and quality preservation effects and is expected to be quantified as a kind of natural food additive with antibacterial and antioxidant properties. This paper not only explores the effect of FI on the quality characteristics of frozen and thawed pork balls in prepared dishes but also provides a theoretical basis for the application of whey polypeptides in prepared meat.

10.
Int J Biol Macromol ; 252: 126474, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37625755

RESUMEN

The effects of different concentrations of catechins on the oil-holding capacity, myofibrillar proteins (MPs) structure and adsorbed properties of interfacial proteins in meat batters were investigated. The addition of 100 mg/kg catechin had no negative effects on the physicochemical properties of meat batter. However, 500 and 1500 mg/kg catechin caused an increase in drip loss and deterioration of dynamic rheological properties; the total sulfhydryl content, surface hydrophobicity and α-helix ratio of MPs decreased significantly (p < 0.05); in meat emulsions, the emulsifying property was reduced, the particle size increased, and less interfacial protein was absorbed on the fat globules. All concentrations of catechins significantly (p < 0.05) inhibited lipid oxidation in meat batters. Medium and high concentrations of catechins induced aggregation of MPs via covalent and noncovalent interactions between MPs and MPs or MPs and catechins, which destroyed the gel and emulsifying property of protein and eventually decrease the oil-holding capacity of meat batters.


Asunto(s)
Catequina , Manipulación de Alimentos , Catequina/química , Proteínas de la Membrana , Carne , Interacciones Hidrofóbicas e Hidrofílicas , Emulsiones/química
11.
Foods ; 12(16)2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37628134

RESUMEN

Whey protein hydrolysate (WPH) has made a breakthrough in inhibiting oxidative deterioration and improving the quality of meat products during storage. Based on our previous study of extracting the most antioxidant active fraction I (FI, the molecular weight < 1 kDa) from whey protein hydrolysates of different molecular weights, the present study continued to delve into the effects of WPH with fraction I on the structure and function of myofibrillar proteins (MP) in ground pork during the freeze-thaw (F-T) cycles. With the number of F-T cycles raised, the total sulfhydryl content, the relative contents of α-helix, Ca2+-ATPase activity, K+-ATPase activity, solubility, emulsion activity index (EAI), and emulsion stability index (ESI) of MP gradually decreased. Conversely, the carbonyl content and the relative content of random curl showed an increasing trend. In particular, the damage to the structure and the function of MP became more pronounced after three F-T cycles. But, during F-T cycles, FI stabilized the structure of MP. Compared to the control group, the 10% FI group showed a remarkable improvement (p < 0.05) in the total sulfhydryl content, Ca2+-ATPase activity, K+-ATPase activity, solubility, EAI and ESI after multiple F-T cycles, suggesting that 10% FI could effectively inhibit protein oxidation and had the influence of preserving MP function properties. In conclusion, WPH with fraction I can be used as a potential natural antioxidant peptide for maintaining the quality of frozen processed meat products.

12.
Foods ; 12(13)2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37444365

RESUMEN

The liver plays a key role in keeping the homeostasis of glucose and lipid metabolism. Insulin resistance of the liver induced by extra glucose and lipid ingestion contributes greatly to chronic metabolic disease, which is greatly threatening to human health. The small peptide, VLPVPQK, originating from casein hydrolysates of milk, shows various health-promoting functions. However, the effects of VLPVPQK on metabolic disorders of the liver are still not fully understood. Therefore, in the present study, the effects and regulatory mechanism of VLPVPQK on insulin-resistant HepG2 cells was further investigated. The results showed that VLPVPQK exerted strong scavenging capacities against various free radicals, including oxygen radicals, hydroxyl radicals, and cellular reactive oxygen species. In addition, supplementation of VLPVPQK (62.5, 125, and 250 µM) significantly reversed the high glucose and fat (30 mM glucose and 0.2 mM palmitic acid) induced decrement of glucose uptake in HepG2 cells without affecting cell viability. Furthermore, VLPVPQK intervention affected the transcriptomic profiling of the cells. The differentially expressed (DE) genes (FDR < 0.05, and absolute fold change (FC) > 1.5) between VLPVPQK and the model group were mostly enriched in the carbohydrate metabolism-related KEGG pathways. Interestingly, the expression of two core genes (HKDC1 and G6PC1) involved in the above pathways was dramatically elevated after VLPVPQK intervention, which played a key role in regulating glucose metabolism. Furthermore, supplementation of VLPVPQK reversed the high glucose and fat-induced depression of AKR1B10. Overall, VLPVPQK could alleviate the metabolic disorder of hepatocytes by elevating the glucose uptake and eliminating the ROS, while the HKDC1 and AKR1B10 genes might be the potential target genes and play important roles in the process.

13.
Int J Biol Macromol ; 234: 123710, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36801276

RESUMEN

The effect of carboxymethyl chitosan (CMCH) on the oxidation stability and gel properties of myofibrillar protein (MP) from frozen pork patties was investigated. The results showed that CMCH could inhibit the denaturation of MP induced by freezing. Compared with the control group, the protein solubility was significantly (P < 0.05) increased, while the carbonyl content, the loss of sulfhydryl groups, and the surface hydrophobicity were decreased, respectively. Meanwhile, the incorporation of CMCH could alleviate the influence of frozen storage on water mobility and reduce the water loss. With the increased concentration of CMCH, the whiteness, strength, and water-holding capacity (WHC) of MP gels were significantly improved, in which the maximum value was at addition level of 1 %. In addition, CMCH inhibited the decrease in the maximum elastic (G') value and loss factor (tan δ) value of samples. By scanning electron microscopy (SEM) observation, CMCH stabilized the microstructure of the gel and maintained the relative integrity of the gel tissue. These findings suggest that CMCH could be used as a cryoprotectant to maintain the structural stability of MP in pork patty during frozen storage.


Asunto(s)
Quitosano , Carne de Cerdo , Carne Roja , Animales , Porcinos , Congelación , Proteínas Musculares/química , Carne Roja/análisis , Quitosano/farmacología , Agua/química , Geles/química
14.
Eur J Med Chem ; 247: 115075, 2023 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-36599228

RESUMEN

The ß-catenin/B-cell lymphoma 9 (BCL9) protein-protein interaction (PPI) is a potential target for the suppression of hyperactive Wnt/ß-catenin signaling that is vigorously involved in cancer initiation and development. Herein, we first described quercetin and its derivatives had potential inhibitory effects on ß-catenin/BCL9 PPI. The most potent compound, quercetin-3'-O-(4-methylpiperazine-1-yl) propyl (C1), directly binded with ß-catenin and disrupted the ß-catenin/BCL9 interaction in both the protein level and the cellular context. C1 also effectively inhibited colorectal cancer in vitro and showed better selectivity in inhibiting hyperactive Wnt/ß-catenin signaling cells like CT26 and HCT116. And we further confirmed that C1 could inhibit CT26 tumor growth in vivo and regulate the tumor immune microenvironment. This study provides a good chemical probe to explore ß-catenin-related biology and a drug-like quercetin derivative as novel ß-catenin/BCL9 PPI inhibitors for further drug development.


Asunto(s)
Quercetina , beta Catenina , beta Catenina/metabolismo , Quercetina/farmacología , Proteínas de Neoplasias/metabolismo , Línea Celular Tumoral , Vía de Señalización Wnt
15.
Meat Sci ; 196: 109029, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36370607

RESUMEN

The potential of chitosan nanoparticles (CHNPs) for improving the quality stability of pork patties under freeze-thaw (F-T) cycles was studied. Chitosan nanoparticles were successfully produced by the ionotropic gelation method. Pork patties were incorporated with 0%, 0.5% chitosan, 1% chitosan, 0.5% CHNPs, and 1% CHNPs and then subjected to repeated F-T cycles. Results showed that CHNPs were able to inhibit lipid and protein oxidation with a significant decrease in the lipid malondialdehyde and protein carbonyl formation in the patties after seven F-T cycles. Low-field nuclear magnetic resonance (LF-NMR) results indicated that CHNPs effectively restrained water mobility of samples. In addition, CHNPs exhibited a distinguishable improvement in the textural properties and water holding capacity in the stored patties during F-T cycles. Thus, CHNPs could be used as a natural ingredient to protect frozen patties from quality degradation caused by temperature fluctuations.


Asunto(s)
Quitosano , Nanopartículas , Carne de Cerdo , Carne Roja , Animales , Porcinos , Quitosano/química , Nanopartículas/química , Agua , Lípidos
16.
Foods ; 12(23)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38231787

RESUMEN

Jinhua lean ham (LH), a dry-cured ham made from the defatted hind legs of pigs, has become increasingly popular among consumers with health concerns. However, the influence of fat removal on the quality of Jinhua ham is still not fully understood. Therefore, a label-free proteomics strategy was used to explore the protein differential profile between Jinhua fatty ham (FH) and lean ham (LH). Results showed that 179 differential proteins (DPs) were detected, including 82 up-regulated and 97 down-regulated DPs in LH vs. FH, among which actin, myosin, tropomyosin, aspartate aminotransferase, pyruvate carboxylase, and glucose-6-phosphate isomerase were considered the key DPs. GO analysis suggested that DPs were mainly involved in binding, catalytic activity, cellular process, and metabolic process, among which catalytic activity was significantly up-regulated in LH. Moreover, the main KEGG-enriched pathways of FH focused on glycogen metabolism, mainly including the TCA cycle, pyruvate metabolism, and glycolysis/gluconeogenesis. However, amino acid metabolism and oxidative phosphorylation were the main metabolic pathways in LH. From the protein differentiation perspective, fat removal significantly promoted protein degradation, amino acid metabolism, and the oxidative phosphorylation process. These findings could help us to understand the effects of fat removal on the nutritional metabolism of Jinhua hams and provide theoretical supports for developing healthier low-fat meat products.

17.
iScience ; 25(10): 105184, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36217544

RESUMEN

R-spondin 2 (RSPO2) drives the potentiation of Wnt signaling and is implicated in tumorigenesis in multiple cancers, but its role in ovarian cancer has not been investigated. Here, we reported that RSPO2 promoted the growth and metastasis of ovarian cancer through the activation of FAK/Src signaling cascades. RSPO2 enhanced the autophosphorylation of FAK and Src through a unique dual receptors mechanism. First, RSPO2-LGR4 interaction prevented the endocytic degradation of LGR4 and promoted LGR4-mediated translocation of Src to the plasma membrane. Second, RSPO2 directly bound to integrin ß3 as a ligand and enhanced the stability of integrins, and both actions potentiated autoactivation of FAK and/or Src in ovarian cancer cells. RSPO2 expression was increased in ovarian tumors and was associated with poor prognosis in patients. Our study highlights the importance of RSPO2 in ovarian tumor progression and suggests that targeting RSPO2/FAK/Src cascades may constitute potential approaches to inhibit the progression of aggressive ovarian cancer.

18.
Biosens Bioelectron ; 217: 114709, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36115123

RESUMEN

Osteosarcoma is one of the most frequent primary sarcoma of bone among adolescents. Early diagnosis of osteosarcoma is the key factor to achieve high survival rate of patients. Nevertheless, traditional histological biopsy is highly invasive and associated with the risk of arousing tumor spread. Herein, we develop a method integrating microfluidics and surface-enhanced Raman spectroscopy (SERS) to isolate plasma-derived exosomes and profile multiple exosomal biomarkers for the diagnosis of osteosarcoma. The method showed highly efficient isolation of exosomes directly from human plasma and can profile exosomes based on protein biomarkers, with the detection limit down to 2 exosomes per µL. The whole assay can be performed in 5 h and only consumed 50 µL of plasma for one analysis. With the method, we analyzed the level of three protein biomarkers, i.e., CD63, vimentin (VIM) and epithelial cell adhesion molecule (EpCAM), on plasma-derived exosomes from 20 osteosarcoma patients and 20 heathy controls. Significantly higher levels of CD63, VIM and EpCAM were observed on plasma exosomes from the osteosarcoma patients compared to the healthy controls. Based on the level of the exosomal biomarkers, a classification model was built for the rapid diagnosis of osteosarcoma, with the sensitivity, specificity and accuracy of 100%, 90% and 95%, respectively. The proposed method does not require complex operations nor expensive equipment, and has great promise in clinical diagnosis of cancer as a liquid biopsy technique.


Asunto(s)
Técnicas Biosensibles , Neoplasias Óseas , Exosomas , Osteosarcoma , Adolescente , Biomarcadores de Tumor , Neoplasias Óseas/diagnóstico , Neoplasias Óseas/metabolismo , Molécula de Adhesión Celular Epitelial/análisis , Exosomas/química , Humanos , Microfluídica/métodos , Osteosarcoma/diagnóstico , Osteosarcoma/metabolismo , Vimentina/análisis , Vimentina/metabolismo
19.
Mikrochim Acta ; 189(9): 340, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35995957

RESUMEN

Covalent organic framework (COF)-decorated magnetic nanoparticles (Fe3O4@DhaTab) with core-shell structure have been synthesized by one-pot method. The prepared Fe3O4@DhaTab was well characterized, and parameters of magnetic solid-phase extraction (MSPE) for parabens were also investigated in detail. Under optimized conditions, the adsorbent dosage was only 3 mg and extraction time was 10 min. The developed Fe3O4@DhaTab-based MSPE-HPLC analysis method offered good linearity (0.01-20 µg mL-1) with R2 (0.999) and low limits of detection (3.3-6.5 µg L-1) using UV detector at 254 nm. The proposed method was applied to determine four parabens in environmental water samples with recoveries in the range 64.0-105% and relative standard deviations of 0.16-7.8%. The adsorption mechanism was explored and indicated that porous DhaTab shell provided π-π, hydrophobic, and hydrogen bonding interactions in the MSPE process. The results revealed the potential of magnetic-functionalized COFs in determination of environmental contaminants.


Asunto(s)
Estructuras Metalorgánicas , Cromatografía Líquida de Alta Presión , Fenómenos Magnéticos , Magnetismo/métodos , Estructuras Metalorgánicas/química , Parabenos
20.
Foods ; 11(14)2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35885376

RESUMEN

The effects of whey protein hydrolysates (WPH) on myofibrillar protein (MP) oxidative stability and the aggregation behavior and the water-holding capacity of pork patties during freeze-thaw (F-T) cycles were investigated. During F-T cycles, the total sulfhydryl content and zeta potential of MP decreased, while peroxide value, surface hydrophobicity, particle size, pressure loss and transverse relaxation times increase. The oxidative stability and the water-holding capacity of pork patties were enhanced by the addition of WPH in a dose-dependent manner, whereas the MP aggregation decreased. The addition of 15% WPH had the most obvious effects on the pork patties, which was similar to that of the 0.02% BHA. After nine F-T cycles, the POV, surface hydrophobicity, particle size and pressure loss of the pork patties with 15% WPH were reduced by 17.20%, 30.56%, 34.67% and 13.96%, respectively, while total sulfhydryl content and absolute value of zeta potential increased by 69.62% and 146.14%, respectively. The results showed that adding 15% WPH to pork patties can be an effective method to inhibit lipid and protein oxidation, reducing protein aggregation and improving the water-holding capacity of pork patties during F-T cycles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA