RESUMEN
BACKGROUND: Gestational diabetes mellitus (GDM) poses a risk for cardiovascular damage during pregnancy. This study focused on evaluating changes in left ventricular myocardial performance in GDM patients using the left ventricular pressure-strain loop (LV-PSL) method and examining risk factors associated with reduced myocardial function. METHODS: A prospective, randomized study involving 112 pregnant women diagnosed with GDM was conducted from June 2021 to June 2024. Additionally, 84 healthy pregnant women from the same period served as the control group. Utilizing both conventional echocardiography and two-dimensional speckle tracking echocardiography, left ventricular myocardial work metrics were assessed using LV-PSL technology. RESULTS: GDM patients demonstrated significantly reduced values for global longitudinal strain (GLS), global work index (GWI), global work efficiency (GWE), and global constructive work (GCW) (p < 0.05), while conventional ultrasound measures showed no significant difference between GDM and control groups. GWI, GWE, GCW, and GLS had high predictive value for cardiac function changes in GDM patients, with GWE showing the highest predictive value {Area under curve (AUC) = 0.866, cutoff value = 95.5%, specificity = 0.77, sensitivity = 0.87}. GWI, GWE, and GCW were negatively correlated with GLS (r = -0.532, -0.411, -0.425, all p < 0.001), whereas global wasted work (GWW) showed a positive correlation with GLS (r = 0.325 and p < 0.001). These parameters were also correlated with HbA1c levels (r = -0.316, -0.256, -0.260, all p < 0.001 for negative correlations, and r = 0.172, p < 0.05 for positive correlations). Multivariate logistic regression indicated that 1-h OGTT (mmol/L), 2-h OGTT (mmol/L), and HbA1c (%) were significant predictors of left ventricular systolic function (GWE) in GDM patients. CONCLUSIONS: LV-PSL is an effective tool for early detection of left ventricular systolic function impairment in GDM patients.
Asunto(s)
Diabetes Gestacional , Ecocardiografía , Ventrículos Cardíacos , Humanos , Diabetes Gestacional/fisiopatología , Femenino , Embarazo , Adulto , Estudios Prospectivos , Ecocardiografía/métodos , Ventrículos Cardíacos/diagnóstico por imagen , Ventrículos Cardíacos/fisiopatología , Función Ventricular Izquierda/fisiología , Disfunción Ventricular Izquierda/fisiopatología , Disfunción Ventricular Izquierda/diagnóstico por imagen , Disfunción Ventricular Izquierda/etiología , Presión Ventricular/fisiologíaRESUMEN
OBJECTIVE: To explore the value of RF-data-based quantitative analysis on vessel stiffness (R-QVS) combined with dynamic vector flow imaging (VFI) in evaluating structural and functional changes in the carotid arteries of patients with type 2 diabetes mellitus (T2DM). METHODS: A prospective study was conducted between October 2022 and April 2024, including 275 consecutive subjects (50 volunteers as controls, 108 patients with T2DM and normal carotid intima-media thickness (CIMT), and 117 patients with T2DM and thickened CIMT). Carotid intima-media thickness (IMT) was measured using real-time intima-media thickness (RIMT) technology, while R-QVS was employed to measure the systolic diameter (Diam), displacement (Dist), hardness coefficient (HC), and pulse wave velocity (PWV) of the distal segment of the carotid artery. VFI was used to measure the maximum wall shear stress (WSSmax), mean wall shear stress (WSSmean), and maximum instantaneous velocity (Vmax) of the vessel wall. Differences in ultrasound parameters among the three groups were compared, and receiver operating characteristic (ROC) curves were plotted to calculate the area under the curve (AUC), evaluating the efficacy of these parameters in assessing structural and functional changes in the carotid arteries of patients with T2DM. RESULTS: There were statistically significant differences in carotid IMT, Diam, Dist, HC, PWV, WSSmax, and Vmax among the three groups (all p < 0.01). The AUCs for evaluating structural and functional changes in the carotid arteries of patients with T2DM using carotid ultrasound parameters Diam, Dist, HC, PWV, WSSmax, and Vmax were 0.64, 0.68, 0.83, 0.88, 0.86, and 0.82, respectively. Multiple linear regression analysis identified Dist., HC, PWV, WSSmax, and WSSmean as influencing factors for CIMT in T2DM patients (with ß values of -0.406, 0.515, 0.564, -0.472, and -0.438, respectively; all p < 0.05). CONCLUSION: R-QVS and VFI techniques contribute to the early assessment of structural and functional changes in the carotid arteries of patients with type 2 diabetes mellitus. Compared with controls, T2DM patients exhibit more advanced functional changes than morphological changes despite normal CIMT. The enhanced sensitivity, reproducibility, and detailed assessment capabilities of these methods make them valuable tools in the early detection and intervention of cardiovascular risk in T2DM.
RESUMEN
Nanomaterials with intrinsic enzyme mimicking activity have achieved widespread application. However, developing novel nanomaterials with multienzyme mimicry activity remains challenging. Herein, Cu3(HITP)2 (HITP = 2,3,6,7,10,11-hexaiminotriphenylene) with ascorbic acid oxidase (AAO)- and peroxidase (POD)-like activity are successfully synthesized. Cu3(HITP)2 exhibits excellent AAO-like activity and can specifically catalyze the oxidation reaction of ascorbic acid (AA). Dehydroascorbic acid (DHAA) obtained from the oxidation of AA is allowed to react with nonfluorescent o-phenylenediamine (OPD) to form 3-(1,2-dihydrox-yethyl) furo[3,4-b]quinoxaline-1-one (DFQ) with strong fluorescence emission. Moreover, Cu3(HITP)2 is able to catalyze the chemiluminescence (CL) reaction of ABEI-H2O2 to generate a strong and glow-type emission based on its POD activity. Inspired by the multienzyme mimicry activity of Cu3(HITP)2, the simple and sensitive fluorescence and chemiluminescence sensing platforms are successfully constructed and applied for the detection of AA. The sensors show high sensitivity and excellent selectivity. We believe that this multienzyme mimicry activity nanomaterial not only can be used to construct the multiple-mode biosensing platform, but also enables the extensive applications in the fields of biomedicine, energy, and environment.
RESUMEN
The prevalence of anxiety, depression, and other psychological comorbidities among patients with inflammatory bowel disease (IBD) significantly exceeds that of the general population. Moreover, a bidirectional relationship exists between psychological comorbidities and IBD. This intricate interplay has substantial clinical implications, impacting treatment adherence, therapeutic efficacy, and disease recurrence rates. In this review, we explore the multifaceted mechanisms through which psychological factors influence IBD progression, treatment response, and prognosis. Specifically, we delve into the involvement of the hypothalamic-pituitary-adrenal axis, autonomic nervous system, enteric nervous system, microbiota-gut-brain axis, systemic inflammatory cytokines, and immune cell function. Additionally, we discuss the potential benefits of antidepressant therapy in mitigating IBD risk and the role of psychotropic drugs in reducing peripheral inflammation. Recognizing and addressing psychological comorbidity is pivotal in comprehensive IBD management. We advocate for the integration of biopsychosocial approaches into IBD treatment strategies, emphasizing the need for innovative psychological interventions as adjuncts to conventional therapies. Rigorous research investigating the impact of antidepressants and behavioral interventions on IBD-specific outcomes may herald a paradigm shift in IBD management.
RESUMEN
Objectives: Proteus are known as opportunistic human pathogens that can cause a variety of infections. Proteus appendicitidis is a novel Proteus species associated with appendicitis, whereas their genomic characteristics and virulence potential remain understudied. This study aims to compare the genomic features of P. appendicitidis to that of the close Proteus species, and to assess its virulence-factor encoding capacity as an emerging pathogen. Methods: Genomes similar to that of P. appendicitidis HZ0627T were retrieved from the PATRIC-v3.6.10 web-server using the implanted Similar Genome Finder tool. Average nucleotide identity (ANI) between HZ0627T and the retrieved genomes was calculated using FastANI-v1.33. Core-genome sequences were extracted using Roary-v3.13.0, and core-genomic tree was constructed using FastTree-v2.1.11. Virulence-factor encoding capacity was predicted using PathoFact-v1.0. Results: Two previously unclassified Proteus sp. strains were reclassified as P. appendicitidis. Strains phylogenomically close to P. appendicitidis were clustered into five species, three of which were previously categorized under P. vulgaris biogroup 3. Remarkably, Proteus genomosp. 6 was identified as the closest species to P. appendicitidis, exhibiting ANI values ranging from 94.45 % to 94.95 % against HZ0627T. Genome annotation revealed shared genomic features and antimicrobial resistance (AMR) genes between P. appendicitidis and its phylogenetic neighbors. Additionally, P. appendicitidis is hypothesized to share infection mechanisms with Proteus genomosp. 6, as evidenced by the encoding of numerous virulence factors implicated in cell lysis and membrane pore-formation in the genome of both species. Conclusions: This study provides genomic insights of P. appendicitidis sp. nov. and its taxonomic relatives, shedding light on their evolutionary relationships, pathogenic mechanisms, and AMR profiles. The findings are significant for the development of targeted therapeutic interventions against infections caused by this emerging pathogen.
RESUMEN
The main bioactive components of agarwood, derived from Aquilaria sinensis, include sesquiterpenes, 2-(2-phenethyl) chromone derivatives, aromatic compounds, and fatty acids, which typically exert anti-inflammatory, antioxidant, immune-modulating, hypoglycemic, and antitumor pharmacological effects in the form of essential oils. Agarwood tree leaves, rich in flavonoids, 2-(2-phenethyl) chromone compounds, and flavonoid compounds, also exhibit significant anti-inflammatory, antioxidant, and immune-modulating effects. These properties are particularly relevant to the treatment of periodontitis, given that inflammatory responses, oxidative stress, and immune dysregulation are key pathological mechanisms of the disease, highlighting the substantial potential of agarwood and agarwood tree leaves in this therapeutic area. However, the low solubility and poor bioavailability of essential oils present challenges that necessitate the development of improved active formulations. In this review, we will introduce the bioactive components, extraction methods, pharmacological actions, and clinical applications of agarwood and agarwood tree leaves, analyzing its prospects for the treatment of periodontitis.
RESUMEN
Small intestinal neuroendocrine tumors (SI-NETs) are a group of rare and significantly heterogeneous tumors with limited research currently available. This study aimed to investigate the incidence, survival, and prognostic factors of SI-NETs. We selected data from the surveillance, epidemiology, and end results (SEER) database between 2000 and 2019 and evaluated the incidence trend of SI-NETs during this period. We utilized the Kaplan-Meier method to examine the association between clinical variables and survival rates. Based on the multivariable Cox regression analysis results, we developed a nomogram to predict the 1-, 2-, and 3-year cancer-specific survival (CSS) of SI-NETs patients. We evaluated the consistency, accuracy, and clinical utility of the nomogram by drawing calibration curves, receiver operating characteristic (ROC) curves, and decision curve analysis (DCA) curves. The incidence of SI-NETs showed an upward trend in recent years. Age, grade, T stage, M stage, and primary tumor surgery were independent risk factors for CSS in SI-NETs patients. The nomogram model based on these risk factors showed high accuracy and clinical benefit. SI-NETs are rare tumors with an increasing incidence rate. The nomogram model is expected to be an effective tool for personalized prognosis prediction in SI-NETs patients, which may benefit clinical decision-making.
Asunto(s)
Neoplasias Intestinales , Intestino Delgado , Tumores Neuroendocrinos , Nomogramas , Programa de VERF , Humanos , Masculino , Femenino , Tumores Neuroendocrinos/mortalidad , Tumores Neuroendocrinos/epidemiología , Incidencia , Persona de Mediana Edad , Neoplasias Intestinales/mortalidad , Neoplasias Intestinales/epidemiología , Intestino Delgado/patología , Pronóstico , Anciano , Adulto , Factores de Riesgo , Curva ROC , Estimación de Kaplan-Meier , Estadificación de Neoplasias , Tasa de SupervivenciaRESUMEN
Protease-activated receptor-2 (PAR2) is a class-A G protein-coupled receptor (GPCR) activated by serine proteases and is expressed by multiple tissues, including the skin. PAR2 is involved in the skin inflammatory response, promoting Th2 inflammation, delaying skin barrier repair, and affecting the differentiation of keratinocytes. It also participates in the transmission of itch and pain sensations in the skin. Increasing evidence indicates that PAR2 plays an important role in the pathogenesis of inflammatory skin diseases such as acne vulgaris, rosacea, psoriasis, and atopic dermatitis. Additional focus will be placed on potential targeted therapies based on PAR2. The Goal of this review is to outline the emerging effects of PAR2 activation in inflammatory skin disease and highlight the promise of PAR2 modulators.
Asunto(s)
Receptor PAR-2 , Humanos , Receptor PAR-2/metabolismo , Animales , Piel/metabolismo , Piel/inmunología , Piel/patología , Enfermedades de la Piel/inmunología , Enfermedades de la Piel/metabolismo , Dermatitis Atópica/inmunología , Dermatitis Atópica/metabolismo , Transducción de Señal , Queratinocitos/metabolismo , Queratinocitos/inmunología , Inflamación/inmunología , Inflamación/metabolismoRESUMEN
The timely and accurate diagnosis of acute myocardial infarction (AMI) is of great significance to reduce mortality and morbidity associated with the condition. Herein, we developed an electrochemiluminescence (ECL) biosensor for the detection of the potential AMI biomarker microRNA-499 (miRNA-499), which was based on duplex-specific nuclease-assisted target recycling and dual-output toehold-mediated strand displacement (TMSD). First, miRNA-499 was converted into a large amount of single-stranded DNA through the DSN-assisted target recycling, which was further incubated with the DNA triple-stranded complex (S) to implement TMSD cycles. Thus, the Ru(bpy)32+-labeled signal strands were released and captured by the capture probe on the electrode surface, resulting in an intense ECL signal. Owing to the prominent cascade signal amplification, the constructed biosensor exhibited a good linear response to miRNA-499 within the range of 100 aM-100 pM with a detection limit of 69.99 aM. Furthermore, it demonstrated superior selectivity, stability, and reproducibility. In addition, the biosensor was successfully applied to detect miRNA-499 in real human serum samples, demonstrating its potential for nucleic acid detection in the early diagnosis of diseases.
Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Mediciones Luminiscentes , MicroARNs , Técnicas de Amplificación de Ácido Nucleico , MicroARNs/análisis , MicroARNs/sangre , Técnicas Biosensibles/métodos , Humanos , Límite de DetecciónRESUMEN
Rare earth (RE) dopants can modulate the bandgap of oxides of indium and gallium and provide extra upconversion luminescence (UCL) abilities. However, relevant UCL fine-tuning strategies and energy mechanisms have been less studied. In this research, InGaO, Ho3+ monodoped and Yb3+/Ho3+ codoped In2O3, and Ho3+ monodoped Yb3Ga5O12 nanoparticles (NPs) were synthesized by a solvothermal method. The effects of Yb3+ and Ho3+ dopants on the crystal structures, UCL properties, and optical bandgaps of the oxides were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), UCL spectroscopy, and measurements of decay times, pump power dependence, and transmittance spectra. The crystal structures of oxide products of indium and gallium were significantly modified with RE dopants. In2O3 and Yb3Ga5O12 were selected as the host materials. For Yb3+/Ho3+ codoped In2O3 NPs, there existed energy transfers from the defect states of In2O3 to Ho3+ and from Yb3+ to Ho3+. With a fixed Ho3+ concentration, In2O3:0%Yb3+,2%Ho3+ NPs showed the optimal UCL properties mainly due to In2O3-Ho3+ energy transfer and Ho3+-Yb3+ energy-back-transfer, while with a fixed Yb3+ concentration, In2O3:5%Yb3+,3%Ho3+ NPs with a slight Yb2O3 impurity and Yb3Ga5O12:2%Ho3+ NPs did mainly due to Ho3+-Ho3+ cross-relaxation. Besides, the optical bandgaps of In2O3 and Yb3Ga5O12 were noticeably broadened with RE dopants. These findings can offer feasible directions for the synthesis and UCL fine-tuning of RE-doped oxides of indium and gallium and improve their multifunction application prospects in the fields of semiconductor and UCL nanomaterials.
RESUMEN
Investigate the impact of remnant cholesterol (RC) levels on carotid artery intima thickness (CIT) in type 2 diabetes mellitus (T2DM) patients. From September 2021 to September 2023, a prospective multicenter study involved 158 T2DM patients. They were divided into a higher RC group (n = 80) and a lower RC group (n = 78) based on median RC levels. Additionally, 92 healthy volunteers served as the control group. CIT, carotid media thickness (CMT), and carotid intima-media thickness (CIMT) were measured. General clinical data, lab results, CIMT, CIT, and CMT differences among the three groups were compared. Multiple regression analysis explored CIT factors in T2DM patients. 1. No significant sex, age, BMI, high-density lipoprotein cholesterol (HDL-C), T2DM duration, fasting blood glucose, or glycated hemoglobin differences were found among the groups (p > 0.05). 2. CIMT and CIT were significantly higher in T2DM than the control group (p < 0.05). 3. The higher RC group had thicker CIT than the lower RC group (p < 0.05), while CIMT differences were not significant (p > 0.05). Multiple linear regression analysis showed RC as an influencing CIT factor in T2DM patients (ß = 0.473, p = 0.005). CIT is significantly thicker in T2DM patients with higher RC than in those with lower RC, and RC is the influence factor of CIT, which suggests that more attention should be paid to the detection of RC in T2DM patients.
Asunto(s)
Grosor Intima-Media Carotídeo , Colesterol , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/patología , Masculino , Femenino , Persona de Mediana Edad , Colesterol/sangre , Estudios Prospectivos , Anciano , Estudios de Casos y Controles , Adulto , Factores de RiesgoRESUMEN
Transparent bamboo proved to be a promising substitute for glass due to its high light transmittance and excellent mechanical properties. Nevertheless, it was susceptible to outdoor weathering, which negatively affected its physical and mechanical properties. In this study, two decolorisation methods, namely the delignification method and the lignin modification method, were used to produce transparent bamboos with epoxy resin, referred to as DL-TB and LM-TB, respectively. The changes in surface color, optical and mechanical properties, wettability, thermal stability, and thermal insulation properties of transparent bamboo during accelerated UV weathering were evaluated. Additionally, the deterioration mechanism of DL-TB and LM-TB was investigated. The findings revealed that DL-TB demonstrated better transparency and mechanical properties than LM-TB, although it exhibited lower thermal insulation properties. Furthermore, DL-TB demonstrated enhanced color stability and higher hydrophobicity on weathered surfaces than LM-TB. Unexpectedly, the tensile properties of both two transparent bamboos significantly improved after weathering, especially for LM-TB, which was due to the EP post-curing and the formation of more hydrogen bonds between lignin and EP. These observations revealed that lignin played a key role in the photodegradation process of transparent bamboo, but further attempts should be made in future studies to improve its color stability.
Asunto(s)
Color , Lignina , Lignina/química , Vidrio/química , Humectabilidad , Sasa/química , Resistencia a la Tracción , Interacciones Hidrofóbicas e Hidrofílicas , Fenómenos MecánicosRESUMEN
Simultaneous detection of multiple targets is of great significance for accurate disease diagnosis. Herein, based on duplex-specific nuclease (DSN) assisted signal amplification and the toehold-mediated strand displacement reaction (TSDR), we constructed an electrochemical biosensor with high sensitivity and high specificity for dual-target detection. MiRNA-141 and miRNA-133a were used as the targets, and ferrocene (Fc) and methylene blue (MB) with significant peak potential differentiation were used as the electrochemical signal probes. The elaborately designed hairpin probe H1, which was fixed on the electrode surface, could be hybridized with the target miRNA-141 to perform signal amplification by the DSN-assisted enzyme cleavage cycle; thus, miRNA-141 could be detected by Fc signal changes at 0.41 V. The hairpin H1 can also combine with the MB-labeled signal probe (SP) output from miRNA-133a-induced TSDR, and the detection of miRNA-133a can be realized according to the response signal generated by MB at -0.26 V. The two sensing lines are independent of each other, and there is no mutual interference in the detection process. Therefore, two independent detection lines could be connected in series, and the simultaneous detection of two targets can be achieved on a single electrode. This novel detection strategy provides a new way to simultaneously detect different biomarkers.
Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , MicroARNs , MicroARNs/análisis , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Humanos , Metalocenos/química , Compuestos Ferrosos/química , Azul de Metileno/química , Técnicas de Amplificación de Ácido Nucleico/métodos , Hibridación de Ácido Nucleico , Límite de Detección , ElectrodosRESUMEN
OBJECTIVE: To compare the clinical application effect and safety of polyetheretherketone (PEEK) and titanium mesh (TM) in cranioplasty. METHODS: Four-year retrospective comparison of patients (96 cases) undergoing synthetic cranioplasty with PEEK or TM. The patients were divided into the PEEK group (24 cases) and the TM group (72 cases) according to the implants, and the patient demographics, general conditions before the operation, postoperative complications, length of postoperative hospital stay, total costs, satisfaction with shaping and long-term complications were compared between the 2 groups. RESULTS: Patients in the PEEK group were younger than those in the TM group (P=0.019). Hospitalization costs were significantly higher in the PEEK group than in the TM group (P<0.001). The incidence of postoperative subcutaneous effusion was 33% in the PEEK group and 6.9% in the TM group, which suggests that patients in the PEEK group had a higher risk of postoperative subcutaneous effusion (P=0.001). There was no significant difference in the incidence of long-term complications and cosmetic satisfaction between the 2 groups at 4 years postoperatively. CONCLUSIONS: In this study, both titanium mesh and PEEK are reliable implants for cranioplasty. Titanium mesh is widely used in cranioplasty due to its cost-effective performance. PEEK has gradually gained recognition due to the characteristics of the material and surgical procedure, but the price needs to be further reduced, and attention should be paid to the occurrence and treatment of early postoperative subcutaneous effusion.
RESUMEN
Objective: The aim of this study is to investigate the effectiveness of combining hyperbaric oxygen therapy (HBOT) with conventional pharmacological interventions in the management of type 2 diabetes mellitus concurrent with sudden deafness. Methods: A cohort of 96 patients diagnosed with sudden deafness was enrolled and subsequently randomized into 2 groups: a treatment group (n = 50) and a control group (n = 46). The control group received standard conventional treatment aimed at enhancing microcirculation and nutritional support for nerves, while the treatment group underwent conventional symptomatic treatment coupled with HBOT. The evaluation encompassed the monitoring of blood glucose and blood lipid levels, clinical efficacy, and absolute hearing threshold improvement in both groups. Results: Following the intervention, noteworthy reductions in blood glucose and blood lipid levels were observed in both groups compared to their respective pretreatment values. Furthermore, posttreatment values in the treatment group exhibited a statistically significant decrease in comparison to those in the control group (P < .05). On assessing clinical efficacy posttreatment, the treatment group demonstrated a significantly higher efficacy than the control group (P < .05). In addition, the absolute hearing thresholds in both groups exhibited a significant decrease posttreatment compared to baseline values. Notably, the treatment group displayed a statistically significant reduction in absolute hearing thresholds compared to the control group posttreatment (P < .05). Conclusion: The combined therapeutic approach utilizing hyperbaric oxygen exhibits effectiveness in mitigating auditory impairment among individuals manifesting sudden deafness concomitant with type 2 diabetes mellitus. Furthermore, this treatment approach is associated with a concurrent reduction in blood glucose and blood lipid levels.
RESUMEN
Fast quantification is the primary challenge in monitoring microplastic fiber (MPF) pollution in water. The process of quantifying the number of MPFs in water typically involves filtration, imaging on a filter membrane, and manual counting. However, this routine workflow has limitations in terms of speed and accuracy. Here, we present an alternative analysis strategy based on our high-resolution lensless shadow microscope (LSM) for rapid imaging of MPFs on a chip and modified deep learning algorithms for automatic counting. Our LSM system was equipped with wide field-of-view submicron-pixel imaging sensors (>1 cm2; â¼500 nm/pixel) and could simultaneously capture the projection image of >3-µm microplastic spheres within 90 s. The algorithms enabled accurate classification and detection of the number and length of >10-µm linear and branched MPFs derived from melamine cleaning sponges in each image (â¼0.4 gigapixels) within 60 s. Importantly, neither MPF morphology (dispersed or aggregated) nor environmental matrix had a notable impact on the automatic recognition of the MPFs by the algorithms. This new strategy had a detection limit of 10 particles/mL and significantly reduced the time of MPF imaging and counting from several hours with membrane-based methods to just a few minutes per sample. The strategy could be employed to monitor water pollution caused by microplastics if an efficient sample separation and a comprehensive sample image database were available.
Asunto(s)
Monitoreo del Ambiente , Microplásticos , Microscopía , Contaminantes Químicos del Agua , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Microscopía/métodos , Algoritmos , Agua/químicaRESUMEN
Cerium-stabilized zirconia (Ce1-xZrxOy, CZO) is renowned for its superior oxygen storage capacity (OSC), a key property long believed to be beneficial to catalytic oxidation reactions. However, 50% Ce-containing CZO recorded with the highest OSC has disappointingly poor performance in catalytic oxidation reactions compared to those with higher Ce contents but lower OSC ability. Here, we employ global neural network (G-NN)-based potential energy surface exploration methods to establish the first ternary phase diagram for bulk structures of CZO, which identifies three critical compositions of CZO, namely, 50, 60, and 80% Ce-containing CZO that are thermodynamically stable under typical synthetic conditions. 50% Ce-containing CZO, although having the highest OSC, exhibits the lowest O vacancy (Ov) diffusion rate. By contrast, 60% Ce-containing CZO, despite lower OSC (33.3% OSC compared to that of 50% Ce-containing CZO), reaches the highest Ov diffusion ability and thus offers the highest CO oxidation catalytic performance. The physical origin of the high performance of 60% Ce-containing CZO is the abundance of energetically favorable Ov pairs along the ⟨110⟩ direction, which reduces the energy barrier of Ov diffusion in the bulk and promotes O2 activation on the surface. Our results clarify the long-standing puzzles on CZO and point out that 60% Ce-containing CZO is the most desirable composition for typical CZO applications.