Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Naunyn Schmiedebergs Arch Pharmacol ; 397(6): 3781-3802, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38165423

RESUMEN

Tianma is the dried tuber of Gastrodia elata Blume (G. elata), which is frequently utilized in clinical practice as a traditional Chinese medicine. Gastrodin (GAS) is the main active ingredient of Tianma, which has good pharmacological activity. Therefore, for the first time, this review focused on the extraction, synthesis, pharmacological effects, and derivatives of GAS and to investigate additional development options for GAS. The use of microorganisms to create GAS is a promising method. GAS has good efficacy in the treatment of neurological diseases, cardiovascular diseases, endocrine diseases, and liver diseases. GAS has significant anti-inflammatory, antioxidant, neuroprotective, vascular protective, blood sugar lowering, lipid-regulating, analgesic, anticancer, and antiviral effects. The mechanism involves various signaling pathways such as Nrf2, NF-κB, PI3K/AKT, and AMPK. In addition, the derivatives of GAS and biomaterials synthesized by GAS and PU suggested a broader application of GAS. The research on GAS is thoroughly summarized in this paper, which has useful applications for tackling a variety of disorders and exhibits good development value.


Asunto(s)
Alcoholes Bencílicos , Glucósidos , Glucósidos/farmacología , Glucósidos/uso terapéutico , Alcoholes Bencílicos/farmacología , Alcoholes Bencílicos/uso terapéutico , Humanos , Animales , Gastrodia/química , Transducción de Señal/efectos de los fármacos
2.
Phytother Res ; 38(2): 880-911, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38088265

RESUMEN

Current pharmaceutical research is energetically excavating the pharmacotherapeutic role of herb-derived ingredients in multiple malignancies' targeting. Luteolin is one of the major phytochemical components that exist in various traditional Chinese medicine or medical herbs. Mounting evidence reveals that this phytoconstituent endows prominent therapeutic actions on diverse malignancies, with the underlying mechanisms, combined medication strategy, and pharmacokinetics elusive. Additionally, the clinical trial and pharmaceutical investigation of luteolin remain to be systematically delineated. The present review aimed to comprehensively summarize the updated information with regard to the anticancer mechanism, combined medication strategies, pharmacokinetics, clinical trials, and pharmaceutical researches of luteolin. The survey corroborates that luteolin executes multiple anticancer effects mainly by dampening proliferation and invasion, spurring apoptosis, intercepting cell cycle, regulating autophagy and immune, inhibiting inflammatory response, inducing ferroptosis, and pyroptosis, as well as epigenetic modification, and so on. Luteolin can be applied in combination with numerous clinical anticarcinogens and natural ingredients to synergistically enhance the therapeutic efficacy of malignancies while reducing adverse reactions. For pharmacokinetics, luteolin has an unfavorable oral bioavailability, it mainly persists in plasma as glucuronides and sulfate-conjugates after being metabolized, and is regarded as potent inhibitors of OATP1B1 and OATP2B1, which may be messed with the pharmacokinetic interactions of miscellaneous bioactive substances in vivo. Besides, pharmaceutical innovation of luteolin with leading-edge drug delivery systems such as host-guest complexes, nanoparticles, liposomes, nanoemulsion, microspheres, and hydrogels are beneficial to the exploitation of luteolin-based products. Moreover, some registered clinical trials on luteolin are being carried out, yet clinical research on anticancer effects should be continuously promoted.


Asunto(s)
Flavonas , Neoplasias , Humanos , Luteolina/farmacología , Luteolina/uso terapéutico , Preparaciones Farmacéuticas , Flavonas/farmacología , Flavonas/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Disponibilidad Biológica
3.
Crit Rev Oncol Hematol ; 193: 104205, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38036153

RESUMEN

Glioblastoma is a fatal intracranial tumor with a poor prognosis, exhibiting uninterrupted malignant progression, widespread invasion throughout the brain leading to the destruction of normal brain tissue and inevitable death. Monoclonal antibodies alone or conjugated with cytotoxic payloads to treat patients with different solid tumors showed effective. This treatment strategy is being explored for patients with glioblastoma (GBM) to obtain meaningful clinical responses and offer new drug options for the treatment of this devastating disease. In this review, we summarize clinical data (from pubmed.gov database and clinicaltrial.gov database) on the efficacy and toxicity of naked antibodies and antibody-drug conjugates (ADCs) against multiple targets on GBM, elucidate the mechanisms that ADCs act at the site of GBM lesions. Finally, we discuss the potential strategies for ADC therapies currently used to treat GBM patients.


Asunto(s)
Antineoplásicos , Neoplasias Encefálicas , Glioblastoma , Inmunoconjugados , Humanos , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Anticuerpos Monoclonales/uso terapéutico , Antineoplásicos/efectos adversos , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Inmunoconjugados/uso terapéutico
4.
Phytother Res ; 37(12): 5639-5656, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37690821

RESUMEN

Hypericin can be derived from St. John's wort, which is widely spread around the world. As a natural product, it has been put into clinical practice such as wound healing and depression for a long time. In this article, we review the pharmacology, pharmacokinetics, and safety of hypericin, aiming to introduce the research advances and provide a full evaluation of it. Turns out hypericin, as a natural photosensitizer, exhibits an excellent capacity for anticancer, neuroprotection, and elimination of microorganisms, especially when activated by light, potent anticancer and antimicrobial effects are obtained after photodynamic therapy. The mechanisms of its therapeutic effects involve the induction of cell death, inhibition of cell cycle progression, inhibition of the reuptake of amines, and inhibition of virus replication. The pharmacokinetics properties indicate that hypericin has poor water solubility and bioavailability. The distribution and excretion are fast, and it is metabolized in bile. The toxicity of hypericin is rarely reported and the conventional use of it rarely causes adverse effects except for photosensitization. Therefore, we may conclude that hypericin can be used safely and effectively against a variety of diseases. We hope to provide researchers with detailed guidance and enlighten the development of it.


Asunto(s)
Hypericum , Perileno , Perileno/farmacología , Antracenos , Muerte Celular , Fármacos Fotosensibilizantes/farmacología
5.
J Mater Chem B ; 11(32): 7582-7608, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37522237

RESUMEN

Glucose oxidase (GOx) has attracted a lot of attention in the field of diabetes diagnosis and treatment in recent years owing to its inherent biocompatibility and glucose-specific catalysis. GOx can effectively catalyze the oxidation of glucose in the blood to hydrogen peroxide (H2O2) and glucuronic acid and can be used as a sensitive element in biosensors to detect blood glucose concentrations. Nanomaterials based on the immobilization of GOx can significantly improve the performance of glucose sensors through, for example, reduced electron tunneling distance. Moreover, various insulin-loaded nanomaterials (e.g., metal-organic backbones, and mesoporous silica nanoparticles) have been developed for the control of blood glucose concentrations based on GOx catalytic chemistry. These nano-delivery carriers are capable of releasing insulin in response to GOx-mediated changes in the microenvironment, allowing for a rapid return of the blood microenvironment to a normal state. Therefore, glucose biosensors and insulin delivery vehicles immobilized with GOx are important tools for the diagnosis and treatment of diabetes. This paper reviews the characteristics of various GOx-based nanomaterials developed for glucose biosensing and insulin-responsive release as well as research progress, and also highlights the current challenges and opportunities facing this field.


Asunto(s)
Diabetes Mellitus , Nanocompuestos , Humanos , Glucemia , Glucosa Oxidasa , Peróxido de Hidrógeno , Glucosa , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/tratamiento farmacológico , Insulina , Insulina Regular Humana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA