Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 21961, 2024 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-39304686

RESUMEN

The rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has triggered global difficulties for both individuals and economies, with new variants continuing to emerge. The Delta variant of SARS-CoV-2 remains most prevalent worldwide, and it affects the efficacy of coronavirus disease 2019 (COVID-19) vaccination. Expedited testing to detect the Delta variant of SARS-CoV-2 and monitor viral transmission is necessary. This study aimed to develop and evaluate a colorimetric reverse-transcription loop-mediated isothermal amplification (RT-LAMP) technique targeting the L452R mutation in the S gene for the specific detection of the Delta variant. In the test, positivity was indicated as a color change from purple to yellow. The assay's 95% limit of detection was 57 copies per reaction for the L452R (U1355G)-specific standard plasmid. Using 126 clinical samples, our assay displayed 100% specificity, 97.06% sensitivity, and 98.41% accuracy in identifying the Delta variant of SARS-CoV-2 compared to real-time RT-PCR. To our knowledge, this is the first colorimetric RT-LAMP assay that can differentiate the Delta variant from its generic SARS-CoV-2, enabling it as an approach for studying COVID-19 demography and facilitating proper effective control measure establishment to fight against the reemerging variants of SARS-CoV-2 in the future.


Asunto(s)
COVID-19 , Colorimetría , Mutación , Técnicas de Amplificación de Ácido Nucleico , SARS-CoV-2 , SARS-CoV-2/genética , Humanos , Técnicas de Amplificación de Ácido Nucleico/métodos , Colorimetría/métodos , COVID-19/virología , COVID-19/diagnóstico , COVID-19/genética , Sensibilidad y Especificidad , Técnicas de Diagnóstico Molecular/métodos , Glicoproteína de la Espiga del Coronavirus/genética , ARN Viral/genética , Prueba de Ácido Nucleico para COVID-19/métodos
2.
Diagn Microbiol Infect Dis ; 110(2): 116446, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39096664

RESUMEN

COVID-19 has afflicted millions of lives worldwide. Although there are many rapid methods to detect it based on colorimetric loop-mediated isothermal amplification, there remains room for improvement. This study aims to 1) integrate multiple primers into a singleplex assay to enhance the diagnostic sensitivity, and 2) utilize a high-throughput smartphone-operatable AI-driven color reading tool to enable a rapid result analysis. This setup can improve the sensitivity by 10-100 times and can analyze approximately 6700 samples per minute. The assay is simpler than RT-qPCR, with a turnaround time of less than 75 min. It can detect various types of SARS-CoV-2 by targeting 3 genes, increasing the likelihood that it will remain effective even if the virus undergoes mutations in any single target gene. In summary, it affords potential for adaptation to detection of new/re-emerging diseases with the visual readout for maximum assay simplicity and AI-operated mode for large-scale testing.


Asunto(s)
COVID-19 , Colorimetría , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico , SARS-CoV-2 , Sensibilidad y Especificidad , Colorimetría/métodos , Humanos , COVID-19/diagnóstico , COVID-19/virología , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Técnicas de Amplificación de Ácido Nucleico/métodos , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/normas , Cartilla de ADN/genética , Prueba de Ácido Nucleico para COVID-19/métodos , Teléfono Inteligente , Prueba de COVID-19/métodos
3.
Polymers (Basel) ; 16(3)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38337307

RESUMEN

Gelatin methacryloyl (GelMA) is an ideal bioink that is commonly used in bioprinting. GelMA is primarily acquired from mammalian sources; however, the required amount makes the market price extremely high. Since garbage overflow is currently a global issue, we hypothesized that fish scales left over from the seafood industry could be used to synthesize GelMA. Clinically, the utilization of fish products is more advantageous than those derived from mammals as they lower the possibility of disease transmission from mammals to humans and are permissible for practitioners of all major religions. In this study, we used gelatin extracted from fish scales and conventional GelMA synthesis methods to synthesize GelMA, then tested it at different concentrations in order to evaluated and compared the mechanical properties and cell responses. The fish scale GelMA had a printing accuracy of 97%, a swelling ratio of 482%, and a compressive strength of about 85 kPa at a 10% w/v GelMA concentration. Keratinocyte cells (HaCaT cells) were bioprinted with the GelMA bioink to assess cell viability and proliferation. After 72 h of culture, the number of cells increased by almost three-fold compared to 24 h, as indicated by many fluorescent cell nuclei. Based on this finding, it is possible to use fish scale GelMA bioink as a scaffold to support and enhance cell viability and proliferation. Therefore, we conclude that fish scale-based GelMA has the potential to be used as an alternative biomaterial for a wide range of biomedical applications.

4.
Talanta ; 249: 123375, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-35738204

RESUMEN

Colorimetric loop-mediated DNA isothermal amplification-based assays have gained momentum in the diagnosis of COVID-19 owing to their unmatched feasibility in low-resource settings. However, the vast majority of them are restricted to proprietary pH-sensitive dyes that limit downstream assay optimization or hinder efficient result interpretation. To address this problem, we developed a novel dual colorimetric RT-LAMP assay using in-house pH-dependent indicators to maximize the visual detection and assay simplicity, and further integrated it with the artificial intelligence (AI) operated tool (RT-LAMP-DETR) to enable a more precise and rapid result analysis in large scale testing. The dual assay leverages xylenol orange (XO) and a newly formulated lavender green (LG) dye for distinctive colorimetric readouts, which enhance the test accuracy when performed and analyzed simultaneously. Our RT-LAMP assay has a detection limit of 50 viral copies/reaction with the cycle threshold (Ct) value ≤ 39.7 ± 0.4 determined by the WHO-approved RT-qPCR assay. RT-LAMP-DETR exhibited a complete concordance with the results from naked-eye observation and RT-qPCR, achieving 100% sensitivity, specificity, and accuracy that altogether render it suitable for ultrasensitive point-of-care COVID-19 screening efforts. From the perspective of pandemic preparedness, our method offers a simpler, faster, and cheaper (∼$8/test) approach for COVID-19 testing and other emerging pathogens with respect to RT-qPCR.


Asunto(s)
COVID-19 , Inteligencia Artificial , COVID-19/diagnóstico , Prueba de COVID-19 , Colorimetría/métodos , ADN , Humanos , Técnicas de Amplificación de Ácido Nucleico/métodos , Sistemas de Atención de Punto , ARN , ARN Viral/genética , SARS-CoV-2/genética , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...