Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Prog Biophys Mol Biol ; 90(1-3): 414-43, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16321428

RESUMEN

Blockade of the delayed rectifier potassium channel current, I(Kr), has been associated with drug-induced QT prolongation in the electrocardiogram and life-threatening cardiac arrhythmias. However, it is increasingly clear that compound-induced interactions with multiple cardiac ion channels may significantly affect QT prolongation that would result from inhibition of only I(Kr) [Redfern, W.S., Carlsson, L., et al., 2003. Relationships between preclinical cardiac electrophysiology, clinical QT interval prolongation and torsade de pointes for a broad range of drugs: evidence for a provisional safety margin in drug development. Cardiovasc. Res. 58(1), 32-45]. Such an assessment may not be feasible in vitro, due to multi-factorial processes that are also time-dependent and highly non-linear. Limited preclinical data, I(Kr) hERG assay and canine Purkinje fiber (PF) action potentials (APs) [Gintant, G.A., Limberis, J.T., McDermott, J.S., Wegner, C.D., Cox, B.F., 2001. The canine Purkinje fiber: an in vitro model system for acquired long QT syndrome and drug-induced arrhythmogenesis. J. Cardiovasc. Pharmacol. 37(5), 607-618], were used for two test compounds in a systems-based modeling platform of cardiac electrophysiology [Muzikant, A.L., Penland, R.C., 2002. Models for profiling the potential QT prolongation risk of drugs. Curr. Opin. Drug. Discov. Dev. 5(1), 127-35] to: (i) convert a canine myocyte model to a PF model by training functional current parameters to the AP data; (ii) reverse engineer the compounds' effects on five channel currents other than I(Kr), predicting significant IC(50) values for I(Na+), sustained and I(Ca2+), L-type , which were subsequently experimentally validated; (iii) use the predicted (I(Na+), sustained and I(Ca2+), L-type) and measured (I(Kr)) IC(50) values to simulate dose-dependent effects of the compounds on APs in endocardial, mid-myocardial, and epicardiac ventricular cells; and (iv) integrate the three types of cellular responses into a tissue-level spatial model, which quantifiably predicted no potential for the test compounds to induce either QT prolongation or increased transmural dispersion of repolarization in a dose-dependent and reverse rate-dependent fashion, despite their inhibition of I(Kr) in vitro.


Asunto(s)
Antiarrítmicos/uso terapéutico , Simulación por Computador , Síndrome de QT Prolongado/tratamiento farmacológico , Torsades de Pointes/tratamiento farmacológico , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Perros , Evaluación Preclínica de Medicamentos , Electrocardiografía , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/fisiopatología , Canales Iónicos/efectos de los fármacos , Canales Iónicos/fisiología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/fisiología , Ramos Subendocárdicos/efectos de los fármacos , Ramos Subendocárdicos/fisiopatología
2.
Curr Opin Drug Discov Devel ; 5(1): 127-35, 2002 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-11865666

RESUMEN

The appearance of QT prolongation and arrhythmic events associated with a compound undergoing clinical trials can greatly hamper drug development programs. Assessing the risk of a compound during preclinical studies to cause this cardiotoxicity is thus critically important to the pharmaceutical industry. A wide variety of preclinical approaches exist to evaluate potential QT issues, including in vitro, in vivo and in silico (i.e., computer simulation) methods. We present an evaluation of recent reports implementing these techniques, with an emphasis on the linkage between drug-induced cardiac action potential changes and QT prolongation both in vitro and in silico. We conclude with a strategy that integrates in silico modeling with in vitro and in vivo experimentation to create a compelling package for assessing potential proarrhythmic risk of a compound.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Síndrome de QT Prolongado/inducido químicamente , Animales , Simulación por Computador , Evaluación Preclínica de Medicamentos , Electrocardiografía/efectos de los fármacos , Electrofisiología , Humanos , Síndrome de QT Prolongado/patología , Síndrome de QT Prolongado/fisiopatología , Modelos Biológicos
3.
Novartis Found Symp ; 247: 222-38; discussion 238-43, 244-52, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12539958

RESUMEN

G protein-coupled receptor (GPCR) mediation of cardiac excitability is often overlooked in predicting the likelihood that a compound will alter repolarization. While the areas of GPCR signal transduction and electrophysiology are rich in data, experiments combining the two are difficult. In silico modelling facilitates the integration of all relevant data in both areas to explore the hypothesis that critical associations may exist between the different GPCR signalling mechanisms and cardiac excitability and repolarization. An example of this linkage is suggested by the observation that a mutation of the gene encoding HERG, the pore-forming subunit of the rapidly activating delayed rectifier K+ current (I(Kr)), leads to a form of long QT syndrome in which affected individuals are vulnerable to stress-induced arrhythmia following beta-adrenergic stimulation. Using Physiome's In Silico Cell, we constructed a model integrating the signalling mechanisms of second messengers cAMP and protein kinase A with I(Kr) in a cardiac myocyte. We analysed the model to identify the second messengers that most strongly influence I(Kr) behaviour. Our conclusions indicate that the dynamics of regulation are multifactorial, and that Physiome's approach to in silico modelling helps elucidate the subtle control mechanisms at play.


Asunto(s)
Diseño de Fármacos , Modelos Biológicos , Receptores de Superficie Celular/fisiología , Secuencias de Aminoácidos , Animales , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Electrofisiología , Proteínas de Unión al GTP/metabolismo , Humanos , Síndrome de QT Prolongado/tratamiento farmacológico , Potasio/metabolismo , Transducción de Señal , Programas Informáticos , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...