Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Chemosphere ; : 142486, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38823423

RESUMEN

The dynamics of hydrographic and biogeochemical properties in a Northwestern coastal area of the Adriatic Sea were investigated. The time series data from continuous observation (2007-2022) allowed the investigation of annual trends and seasonal cycles along a coastal transect influenced by local river discharge. Various statistical models were used to investigate water temperature, salinity, chlorophyll a, dissolved organic, inorganic and particulate nutrients, precipitation and river discharge. It was found that the local river discharge regime played an essential role in interannual, and seasonal biogeochemical dynamics associated with global climate change in the Mediterranean region. A significant trend towards oligotrophic conditions was detected, as evidenced by the downward trend in the river mouth and on the sea of chlorophyll a (-0.2 µg L-1 in the sea), dissolved organic and inorganic nitrogen and phosphorus (i.e., -0.43 µM yr-1 of DON in the sea and -6.67 of DIN µM yr-1 in the river mouth or -0.07 µM yr-1 of DOP and -0.02 µM yr-1 of DIP in the river mouth) and silicate (-2.47 µM yr-1 in the river mouth) concentrations. Salinity showed a long-term increase in the sea (0.08 yr-1), corresponding to a significant decrease in water discharge from the local river (-0.27 m3 s-1 yr-1) and precipitation (-0.06 mm yr-1). The dissolved organic and inorganic nutrients highlighted a different seasonal accumulation under the river runoff regime. The nutrient enrichment was predominantly driven by river contribution. Data analysis showed that the coastal biogeochemical properties dynamics were mostly influenced by river discharge and precipitation regimes, which in turn are driven by climate change variability in the North- western Adriatic Sea.

2.
Sci Rep ; 13(1): 20164, 2023 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-37978238

RESUMEN

Environmental DNA metabarcoding is increasingly implemented in biodiversity monitoring, including phytoplankton studies. Using 21 mock communities composed of seven unicellular diatom and dinoflagellate algae, assembled with different composition and abundance by controlling the number of cells, we tested the accuracy of an eDNA metabarcoding protocol in reconstructing patterns of alpha and beta diversity. This approach allowed us to directly evaluate both qualitative and quantitative metabarcoding estimates. Our results showed non-negligible rates (17-25%) of false negatives (i.e., failure to detect a taxon in a community where it was included), for three taxa. This led to a statistically significant underestimation of metabarcoding-derived alpha diversity (Wilcoxon p = 0.02), with the detected species richness being lower than expected (based on cell numbers) in 8/21 mock communities. Considering beta diversity, the correlation between metabarcoding-derived and expected community dissimilarities was significant but not strong (R2 = 0.41), indicating suboptimal accuracy of metabarcoding results. Average biovolume and rDNA gene copy number were estimated for the seven taxa, highlighting a potential, though not exhaustive, role of the latter in explaining the recorded biases. Our findings highlight the importance of mock communities for assessing the reliability of phytoplankton eDNA metabarcoding studies and identifying their limitations.


Asunto(s)
Código de Barras del ADN Taxonómico , ADN Ambiental , Código de Barras del ADN Taxonómico/métodos , Fitoplancton/genética , Reproducibilidad de los Resultados , Biodiversidad , ADN Ambiental/genética , Monitoreo del Ambiente/métodos
3.
Environ Pollut ; 338: 122700, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37804906

RESUMEN

This study is based on assessing fecal indicator bacteria contamination along meteorological, hydrological and physical-chemical variables after high rainy events during the summer period. The study focused on four different coastal sites in the western and eastern Adriatic coast characterized by various geomorphological and hydrological features, levels of urbanization and anthropogenic pressures, with the aim of finding appropriate and effective solutions to ensure the safety and sustainability of tourism and public health. Detailed in-situ survey revealed a wide range of fecal indicator bacterial (FIB) across the different river mouths with concentrations of E. coli ranging from 165 to 6700 CFU 100 mL-1. It was found that nitrogen compounds track microbial load and acted as tracers for fecal contaminants. Further, a modelling tool was also used to analyze the spatial and temporal distribution of fecal pollution at these coastal sites. The integrated monitoring through high frequent survey in river waters and modeling framework allowed for the estimation of fecal indicator bacterial load at the river mouth and examination of fecal pollutant dispersion in recreational waters, considering different scenarios of fecal dispersion along the coast. This study formed the basis of a robust decision support system aimed at improving the management of recreational areas and ensuring the protection of water bodies through efficient management of bathing areas.


Asunto(s)
Monitoreo del Ambiente , Escherichia coli , Bacterias , Contaminación de Medicamentos , Salud Pública , Heces/microbiología , Microbiología del Agua
4.
Chemosphere ; 319: 137940, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36702405

RESUMEN

Marine toxins have a significant impact on seafood resources and human health. Up to date, mainly based on bioassays results, two genera of toxic microalgae, Gambierdiscus and Fukuyoa have been hypothesized to produce a suite of biologically active compounds, including maitotoxins (MTXs) and ciguatoxins (CTXs) with the latter causing ciguatera poisoning (CP) in humans. The global ubiquity of these microalgae and their ability to produce (un-)known bioactive compounds, necessitates strategies for screening, identifying, and reducing the number of target algal species and compounds selected for structural elucidation. To accomplish this task, a dereplication process is necessary to screen and profile algal extracts, identify target compounds, and support the discovery of novel bioactive chemotypes. Herein, a dereplication strategy was applied to a crude extract of a G. balechii culture to investigate for bioactive compounds with relevance to CP using liquid chromatography-high resolution mass spectrometry, in vitro cell-based bioassay, and a combination thereof via a bioassay-guided micro-fractionation. Three biologically active fractions exhibiting CTX-like and MTX-like toxicity were identified. A naturally incurred fish extract (Sphyraena barracuda) was used for confirmation where standards were unavailable. Using this approach, a putative I/C-CTX congener in G. balechii was identified for the first time, 44-methylgambierone was confirmed at 8.6 pg cell-1, and MTX-like compounds were purported. This investigative approach can be applied towards other harmful algal species of interest. The identification of a microalgal species herein, G. balechii (VGO920) which was found capable of producing a putative I/C-CTX in culture is an impactful advancement for global CP research. The large-scale culturing of G. balechii could be used as a source of I/C-CTX reference material not yet commercially available, thus, fulfilling an analytical gap that currently hampers the routine determination of CTXs in various environmental and human health-relevant matrices.


Asunto(s)
Intoxicación por Ciguatera , Ciguatoxinas , Dinoflagelados , Animales , Humanos , Ciguatoxinas/toxicidad , Ciguatoxinas/análisis , Toxinas Marinas/análisis , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos
5.
Mar Drugs ; 22(1)2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-38248656

RESUMEN

Many dinoflagellates of the genus Alexandrium are well known for being responsible for harmful algal blooms (HABs), producing potent toxins that cause damages to other marine organisms, aquaculture, fishery, tourism, as well as induce human intoxications and even death after consumption of contaminated shellfish or fish. In this review, we summarize potential bioprospecting associated to the genus Alexandrium, including which Alexandrium spp. produce metabolites with anticancer, antimicrobial, antiviral, as well as anti-Alzheimer applications. When available, we report their mechanisms of action and targets. We also discuss recent progress on the identification of secondary metabolites with biological properties favorable to human health and aquaculture. Altogether, this information highlights the importance of studying which culturing conditions induce the activation of enzymatic pathways responsible for the synthesis of bioactive metabolites. It also suggests considering and comparing clones collected in different locations for toxin monitoring and marine bioprospecting. This review can be of interest not only for the scientific community, but also for the entire population and industries.


Asunto(s)
Dinoflagelados , Animales , Humanos , Floraciones de Algas Nocivas , Acuicultura , Bioprospección , Biotecnología
6.
Environ Pollut ; 290: 118101, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34523510

RESUMEN

Plastic pollution is a global issue posing a threat to marine biota with ecological implications on ecosystem functioning. Micro and nanoplastic impact on phytoplankton autotrophic species (e.g., cell growth inhibition, decrease in chlorophyll a and photosynthetic efficiency and hetero-aggregates formation) have been largely documented. However, the heterogeneity of data makes rather difficult a comparison based on size (i.e. micro vs nano). In addition, knowledge gaps on the ecological impact on phytoplankton assemblage structure and functioning are evident. A new virtual meta-analysis on cause-effect relationships of micro and nanoplastics on phytoplankton species revealed the significant effect posed by polymer type on reducing cell density for tested PVC, PS and PE plastics. Linked with autotrophic phytoplankton role in atmospheric CO2 fixation, a potential impact of plastics on marine carbon pump is discussed. The understanding of the effects of microplastics and nanoplastics on the phytoplankton functioning is fundamental to raise awareness on the overall impact on the first level of marine food web. Interactions between micro and nanoplastics and phytoplankton assemblages have been quite documented by in vitro examinations; but, further studies considering natural plankton assemblages and/or large mesocosm experiments should be performed to evaluate and try predicting ecological impacts on primary producers.


Asunto(s)
Plásticos , Contaminantes Químicos del Agua , Clorofila A , Ecosistema , Fitoplancton , Plásticos/toxicidad , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
7.
J Environ Manage ; 295: 113099, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34175506

RESUMEN

In the Adriatic Sea, massive rainfall events are causing flooding of rivers and streams, with severe consequences on the environment. The consequent bacterial contamination of bathing water poses public health risks besides damaging tourism and the economy. This study was conducted in the framework of WATERCARE, an EU Interreg Italy-Croatia Project, which aims at reducing the impact of microbial contamination on Adriatic bathing water due to heavy rainfall events drained in the local sewage network and; enhancing the quality of local waters; and providing support for the decision-making processes regarding the management of bathing water in line with EU regulations. The study involved the development of an innovative water quality integrated system that helps meet these objectives. It consists of four components: a real time hydro-meteorological monitoring system; an autosampler to collect freshwater samples during and after significant rainfall events; a forecast system to simulate the dispersion of pollutants in seawater; and a real-time alert system that can predict the potential ecological risk from the microbial contamination of seawater. The system was developed and tested at a pilot site (Fano, Italy). These preliminary results will be used to develop guidelines for urban wastewater and coastal system quality assessments to contribute to develop policy actions and final governance decisions.


Asunto(s)
Microbiología del Agua , Calidad del Agua , Playas , Croacia , Monitoreo del Ambiente , Italia , Agua de Mar , Abastecimiento de Agua
8.
Environ Pollut ; 262: 114268, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32120257

RESUMEN

Marine diatoms have been identified among the most abundant taxa of microorganisms associated with plastic waste collected at sea. However, the impact of nano-sized plastic fragments (nanoplastics) at single cell and population level is almost unknown. We exposed the marine diatom Skeletonema marinoi to model polystyrene nanoparticles with carboxylic acid groups (PS-COOH NPs, 90 nm) for 15 days (1, 10, 50 µg/mL). Growth, reactive oxygen species (ROS) production, and nano-bio-interactions were investigated. No effect on diatom growth was observed, however Dynamic light scattering (DLS) demonstrated the formation of large PS aggregates which were localized at the diatoms' fultoportula process (FPP), as shown by TEM images. Increase production of ROS and reduction in chain length were also observed upon PS NPs exposure (p < 0.005). The observed PS-diatom interaction could have serious consequences on diatoms ecological role on the biogeochemical cycle of carbon, by impairing the formation of fast-sinking aggregates responsible for atmospheric carbon fixation and sequestration in the ocean sea floor. S. marinoi exposure to PS NPs caused an increase of intracellular and extracellular oxidative stress, the reduction of diatom's chain length and the adhesion of PS NPs onto the algal surface.


Asunto(s)
Diatomeas , Nanopartículas , Ecosistema , Plásticos , Poliestirenos
9.
Chemosphere ; 238: 124560, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31437632

RESUMEN

Plastics are the most abundant marine debris globally dispersed in the oceans and its production is rising with documented negative impacts in marine ecosystems. However, the chemical-physical and biological interactions occurring between plastic and planktonic communities of different types of microorganisms are poorly understood. In these respects, it is of paramount importance to understand, on a molecular level on the surface, what happens to plastic fragments when dispersed in the ocean and directly interacting with phytoplankton assemblages. This study presents a computer-aided analysis of electron paramagnetic resonance (EPR) spectra of selected spin probes able to enter the phyoplanktonic cell interface and interact with the plastic surface. Two different marine phytoplankton species were analyzed, such as the diatom Skeletonema marinoi and dinoflagellate Lingulodinium polyedrum, in absence and presence of polyethylene terephthalate (PET) fragments in synthetic seawater (ASPM), in order to in-situ characterize the interactions occurring between the microalgal cells and plastic surfaces. The analysis was performed at increasing incubation times. The cellular growth and adhesion rates of microalgae in batch culture medium and on the plastic fragments were also evaluated. The data agreed with the EPR results, which showed a significant difference in terms of surface properties between the diatom and dinoflagellate species. Low-polar interactions of lipid aggregates with the plastic surface sites were mainly responsible for the cell-plastic adhesion by S. marinoi, which is exponentially growing on the plastic surface over the incubation time.


Asunto(s)
Diatomeas/metabolismo , Dinoflagelados/metabolismo , Microalgas/crecimiento & desarrollo , Fitoplancton/metabolismo , Plásticos/metabolismo , Tereftalatos Polietilenos/metabolismo , Ecosistema , Espectroscopía de Resonancia por Spin del Electrón , Microalgas/metabolismo , Océanos y Mares , Agua de Mar/química , Residuos/análisis
10.
Toxins (Basel) ; 11(5)2019 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-31130661

RESUMEN

In September 2015, a massive occurrence of the Ostreopsis species was recorded in central Adriatic Kastela Bay. In order to taxonomically identify the Ostreopsis species responsible for this event and determine their toxin profile, cells collected in seawater and from benthic macroalgae were analyzed. Conservative taxonomic methods (light microscopy and SEM) and molecular methods (PCR-based assay) allowed the identification of the species Ostreopsis cf. ovata associated with Coolia monotis. The abundance of O. cf. ovata reached 2.9 × 104 cells L-1 in seawater, while on macroalgae, it was estimated to be up to 2.67 × 106 cells g-1 of macroalgae fresh weight and 14.4 × 106 cells g-1 of macroalgae dry weight. An indirect sandwich immunoenzymatic assay (ELISA) and liquid chromatography-high-resolution mass spectrometry (LC-HRMS) were used to determine the toxin profile. The ELISA assay revealed the presence of 5.6 pg palytoxin (PLTX) equivalents per O. cf. ovata cell. LC-HRMS was used for further characterization of the toxin profile, which showed that there were 6.3 pg of the sum of ovatoxins (OVTXs) and isobaric PLTX per O. cf. ovata cell, with a prevalence of OVTXs (6.2 pg cell-1), while the isobaric PLTX concentration was very low (0.1 pg cell-1). Among OVTXs, the highest concentration was recorded for OVTX-a (3.6 pg cell-1), followed by OVTX-b (1.3 pg cell-1), OVTX-d (1.1 pg cell-1), and OVTX-c (0.2 pg cell-1).


Asunto(s)
Dinoflagelados , Toxinas Marinas/análisis , Agua de Mar/microbiología , Dinoflagelados/química , Dinoflagelados/genética , Monitoreo del Ambiente , Océanos y Mares
11.
Sci Rep ; 9(1): 4166, 2019 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-30862824

RESUMEN

Increased anthropic pressure on the coastal zones of the Mediterranean Sea caused an enrichment in nutrients, promoting microalgal proliferation. Among those organisms, some species, such as the dinoflagellate Alexandrium minutum, can produce neurotoxins. Toxic blooms can cause serious impacts to human health, marine environment and economic maritime activities at coastal sites. A mathematical model predicting the presence of A. minutum in coastal waters of the NW Adriatic Sea was developed using a Random Forest (RF), which is a Machine Learning technique, trained with molecular data of A. minutum occurrence obtained by molecular PCR assay. The model is able to correctly predict more than 80% of the instances in the test data set. Our results showed that predictive models may play a useful role in the study of Harmful Algal Blooms (HAB).


Asunto(s)
Dinoflagelados/fisiología , Modelos Teóricos , Océanos y Mares , Agua de Mar/parasitología , Intoxicación por Mariscos/parasitología , Algoritmos
12.
Chemosphere ; 215: 881-892, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30408884

RESUMEN

Paralytic shellfish toxins (PST) and tetrodotoxin (TTX) are naturally-occurring toxins that may contaminate the food chain, inducing similar neurological symptoms in humans. They are co-extracted under the same conditions and thus their combined detection is desirable. Whilst PST are regulated and officially monitored in Europe, more data on TTX occurrence in bivalves and gastropods are needed before meaningful regulations can be established. In this study, we used three separate analytical methods - pre-column oxidation with liquid chromatography and fluorescence detection, ultrahigh performance hydrophilic interaction liquid chromatography (HILIC) tandem mass spectrometry (MS/MS) and HILIC high resolution (HR) MS/MS - to investigate the presence of PST and TTX in seawater and shellfish (mussels, clams) collected in spring summer 2015 to 2017 in the Mediterranean Sea. Samples were collected at 10 sites in the Syracuse Bay (Sicily, Italy) in concomitance with a mixed bloom of Alexandrium minutum and A. pacificum. A very high PST contamination in mussels emerged, unprecedentedly found in Italy, with maximum total concentration of 10851 µg saxitoxin equivalents per kg of shellfish tissue measured in 2016. In addition, for the first time TTX was detected in Italy in most of the analysed samples in the range 0.8-6.4 µg TTX eq/kg. The recurring blooms of PST-producing species over the 3-year period, the high PST levels and the first finding of TTX in mussels from the Syracuse bay, suggest that monitoring programmes of PST and TTX in seafood should be activated in this geographical area.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Intoxicación por Mariscos/diagnóstico , Mariscos/efectos adversos , Espectrometría de Masas en Tándem/métodos , Tetrodotoxina/metabolismo , Animales , Peces , Humanos , Italia , Sicilia
13.
Environ Pollut ; 244: 617-626, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30384067

RESUMEN

Plastic debris carry fouling a variety of class-size organisms, among them harmful microorganisms that potentially play a role in the dispersal of allochthonous species and toxic compounds with ecological impacts on the marine environment and human health. We analyzed samples of marine plastics floating at the sea surface using a molecular qPCR assay to quantify the attached microalgal taxa, in particular, harmful species. Diatoms were the most abundant group of plastic colonizers with maximum abundance of 8.2 × 104 cells cm-2 of plastics, the maximum abundance of dinoflagellates amounted to 1.1 × 103 cells cm-2 of plastics. The most abundant harmful microalgal taxon was the diatom Pseudo-nitzschia spp., including at least 12 toxic species, and the dinoflagellate Ostreopsis cf. ovata with 6606 and 259 cells cm-2, respectively. The abundance of other harmful microalgal species including the toxic allochthonous dinoflagellate Alexandrium pacificum ranged from 1 to 73 cells cm-2. In the present study, a direct relationship between the abundance of harmful algal species colonizing the plastic substrates and their toxin production was found. The levels of potential toxins on plastic samples ranged from 101 to 102 ng cm-2, considering the various toxin families produced by the colonized harmful microalgal species. We also measured the rate of adhesion by several target microalgal species. It ranged from 1.8 to 0.3 day-1 demonstrating the capacity of plastic substrate colonizing rapidly by microalgae. The present study reports the first estimates of molecular quantification of microorganisms including toxin producing species that can colonize plastics. Such findings provide important insights for improving the monitoring practice of plastics and illustrate how the epi-plastic community can exacerbate the harmful effects of plastics by dispersal, acting as an alien and toxic species carrier and potentially being ingested through the marine trophic web.


Asunto(s)
Diatomeas/crecimiento & desarrollo , Dinoflagelados/crecimiento & desarrollo , Monitoreo del Ambiente , Toxinas Marinas/análisis , Microalgas/crecimiento & desarrollo , Plásticos/química , Diatomeas/aislamiento & purificación , Dinoflagelados/aislamiento & purificación , Humanos , Microalgas/aislamiento & purificación , Residuos/análisis
14.
Colloids Surf B Biointerfaces ; 161: 620-627, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-29156339

RESUMEN

The silicon transport and use inside cells are key processes for understanding how diatoms metabolize this element in the silica biogenic cycle in the ocean. A spin-probe electron paramagnetic resonance (EPR) study over time helped to investigate the interacting properties and the internalization mechanisms of silicic acid from different silicon sources into the cells. Diatom cells were grown in media containing biogenic amorphous substrates, such as diatomaceous earth and sponge spicules, and crystalline sodium metasilicate. It was found that the amorphous biogenic silicon slowed down the internalization process probably due to formation of colloidal particles at the cell surface after silicic acid condensation. Weaker interactions occurred with sponge spicules silicon source if compared to the other sources. The EPR results were explained by analyzing transcript level changes of silicon transporters (SITs) and silaffins (SILs) in synchronized Thalassiosira pseudonana cultures over time. The results indicated that the transport role of SITs is minor for silicic acid from both biogenic and crystalline substrates, and the role of SIT3 is linked to the transport of silicon inside the cells, mainly in the presence of sponge spicules. SIL3 transcripts were expressed in the presence of all silicon sources, while SIL1 transcripts only with sponge spicules. The data suggest that the transport of silicic acid from various silicon sources in diatoms is based on different physico-chemical interactions with the cell surface.


Asunto(s)
Coloides/química , Diatomeas/química , Ácido Silícico/química , Dióxido de Silicio/química , Silicio/química , Proteínas Algáceas/genética , Proteínas Algáceas/metabolismo , Coloides/metabolismo , Diatomeas/genética , Diatomeas/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Expresión Génica , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Péptidos/genética , Péptidos/metabolismo , Ácido Silícico/metabolismo , Silicio/metabolismo , Dióxido de Silicio/metabolismo , Propiedades de Superficie
15.
Environ Sci Technol ; 51(23): 13920-13928, 2017 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-29131595

RESUMEN

Fifty-five strains of Ostreopsis were collected in the Mediterranean Sea and analyzed to characterize their toxin profiles. All the strains were grown in culture under the same experimental conditions and identified by molecular PCR assay based on the ITS-5.8S rDNA. A liquid chromatography-high resolution multiple stage mass spectrometry (LC-HRMSn) approach was used to analyze toxin profiles and to structurally characterize the detected toxins. Despite morphological and molecular characterization being consistent within the species O. cf. ovata, a certain degree of toxin variability was observed. All the strains produced ovatoxins (OVTXs), with the exception of only one strain. Toxin profiles were quite different from both qualitative and quantitative standpoints: 67% of the strains contained OVTX-a to -e, OVTX-g, and isobaric PLTX, in 25% of them only OVTX-a, -d, -e and isobaric PLTX were present, while 4% produced only OVTX-b and -c. None of the strains showed a previously identified profile, featuring OVTX-f as dominant toxin, whereas OVTX-f was a minor component of very few strains. Toxin content was mostly in the range 4-70 pg/cell with higher levels (up to 238 pg/cell) being found in strains from the Ligurian and South Adriatic Sea. Structural insights into OVTX-b, -c, -d, and -e were gained, and the new OVTX-l was detected in 36 strains.


Asunto(s)
Dinoflagelados , Toxinas Marinas , Cromatografía Liquida , Mar Mediterráneo , Espectrometría de Masas en Tándem
16.
Mar Genomics ; 36: 49-55, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28625778

RESUMEN

Studying taxonomic and ecological diversity of phytoplankton assemblages is often difficult because morphological analysis cannot provide a complete description of their composition. Therefore, more robust and feasible approaches have to be chosen to elucidate the interactions between environmental and human pressures and phytoplankton assemblages. The Ocean Sampling Day (OSD) allowed collecting seawater samples from a wide range of oceanic regions including the Mediterranean Sea. In this study, a total of 754,167 V4-18S ribosomal DNA (rDNA) metabarcodes derived from 20 plankton samples collected at 19 sampling sites across the coastal areas of the Mediterranean Sea were analyzed to explore the relationships between phytoplankton assemblages' composition, sub-regional environmental features and human pressures. We reduced the whole set of autotroph plankton (1398 OTUs) to a smaller number of ecologically relevant entities (205 taxa) and used the latter for analysing the structure of phytoplankton assemblages. Chaetoceros was the only genus occurring in all the samples, while the number of taxa was maximum in the W Mediterranean. Based on the assigned OTUs, the structure of E Mediterranean phytoplankton was the most homogeneous. Further, phytoplankton assemblages from the three Mediterranean sub-regions (Western, Adriatic and Eastern) were significantly different (R=0.25, p=0.0136) based on Jaccard similarity. We also observed that phytoplankton diversity and human impact on marine ecosystems were not significantly related to each other based on Mantel's test.


Asunto(s)
Biodiversidad , Fitoplancton/clasificación , Fitoplancton/fisiología , Secuenciación de Nucleótidos de Alto Rendimiento , Mar Mediterráneo , Microalgas/clasificación , Microalgas/genética , Microalgas/fisiología , Fitoplancton/genética , ARN de Algas/genética , ARN Ribosómico 18S/genética
17.
Sci Rep ; 7(1): 4259, 2017 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-28652566

RESUMEN

The aim of this study was to develop and validate a high resolution melting (HRM) method for the rapid, accurate identification of the various harmful diatom Pseudo-nitzschia species in marine environments. Pseudo-nitzschia has a worldwide distribution and some species are toxic, producing the potent domoic acid toxin, which poses a threat to both human and animal health. Hence, it is important to identify toxic Pseudo-nitzschia species. A pair of primers targeting the LSU rDNA of the genus Pseudo-nitzschia was designed for the development of the assay and its specificity was validated using 22 control DNAs of the P. calliantha, P. delicatissima/P. arenysensis complex and P. pungens. The post-PCR HRM assay was applied to numerous unidentified Pseudo-nitzschia strains isolated from the northwestern Adriatic Sea (Mediterranean Sea), and it was able to detect and discriminate three distinct Pseudo-nitzschia taxa from unidentified samples. Moreover, the species-specific identification of Pseudo-nitzschia isolates by the HRM assay was consistent with phylogenetic analyses. The HRM assay was specific, robust and rapid when applied to high numbers of cultured samples in order to taxonomically identify Pseudo-nitzschia isolates recovered from environmental samples.


Asunto(s)
ADN Ribosómico/genética , Diatomeas/genética , Filogenia , Animales , Diatomeas/aislamiento & purificación , Diatomeas/patogenicidad , Humanos , Toxinas Marinas/genética , Toxinas Marinas/aislamiento & purificación , Mar Mediterráneo , Desnaturalización de Ácido Nucleico/genética
18.
Harmful Algae ; 63: 56-67, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28366400

RESUMEN

In the last few decades, the frequency of the toxic benthic dinoflagellate Ostreopsis cf. ovata proliferation has increased in the Mediterranean Sea. These blooms are associated with harmful effects on human health and the environment. The present work provides the first long term study on the spatio-temporal distribution of O. cf. ovata in relation to physical parameters in the Gulf of Gabès coastal waters (south-eastern Mediterranean Sea), as well as its morphological, molecular and physiological features. The strains of O. cf. ovata were identified morphologically by light and epifluorescence microscopy. The morphology and the size range of cultured strains were similar to those described regarding O. cf. ovata isolated from the Mediterranean Sea. The ultrastructural analysis of O. cf. ovata cells using the transmission electron microscopy showed the presence of numerous vesicles (VE) containing spirally coiled fibers (SCFs) connected to the mucus canal (CH). The phylogenetic tree based on the internal transcribed spacer region containing the 5.8S rDNA (ITS-5.8S rDNA) revealed that O. cf. ovata strains were placed into the Mediterranean/Atlantic clade. In addition, O. cf. ovata toxicity was evaluated by the mouse bioassay and a dose level≥4×104 cells was found to be lethal to mice. The examination of the O. cf. ovata occurrence in the Gulf of Gabès at a large temporal scale (1997-2012) revealed a clear seasonal pattern with dominance from midsummer (July) to late autumn (November). Furthermore, a positive correlation was found between the abundance of O. cf. ovata and salinity, whereas no correlation was found as regards temperature. The occurrence of O. cf. ovata was only detected at salinity above 35 and the highest concentrations were observed at 45. Laboratory experiments confirmed such a result and showed that isolated O. cf. ovata strains had optimal growth at salinity ranging between 35 and 45, with its peak at 40.


Asunto(s)
Bioensayo/métodos , Dinoflagelados/metabolismo , Animales , ADN Ribosómico/genética , Humanos , Mar Mediterráneo , Microscopía Electrónica de Transmisión , Análisis Espacio-Temporal
19.
Harmful Algae ; 63: 7-12, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28366402

RESUMEN

During the past decade, next generation sequencing (NGS) technologies have provided new insights into the diversity, dynamics, and metabolic pathways of natural microbial communities. But, these new techniques face challenges related to the genome size and level of genome complexity of the species under investigation. Moreover, the coverage depth and the short-read length achieved by NGS based approaches also represent a major challenge for assembly. These factors could limit the use of these high-throughput sequencing methods for species lacking a reference genome and characterized by a high level of complexity. In the present work, the evolutionary history, mainly consisting of gene transfer events from bacteria and unicellular eukaryotes to microalgae, including harmful species, is discussed and reviewed as it relates to NGS application in microbial communities, with a particular focus on harmful algal bloom species and dinoflagellates. In the context of genetic population studies, genotyping-by-sequencing (GBS), an NGS based approach, could be used for the discovery and analysis of single nucleotide polymorphisms (SNPs). The NGS technologies are still relatively new and require further improvement. Specifically, there is a need to develop and standardize tools and approaches to handle large data sets, which have to be used for the majority of HAB species characterized by evolutionary highly dynamic genomes.


Asunto(s)
Genoma de Planta/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Microalgas/genética , Animales , Genotipo , Humanos , Análisis de Secuencia de ADN/métodos
20.
J Phycol ; 52(6): 1064-1084, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27633521

RESUMEN

The new benthic toxic dinoflagellate, Ostreopsis fattorussoi sp. nov., is described from the Eastern Mediterranean Sea, Lebanon and Cyprus coasts, and is supported by morphological and molecular data. The plate formula, Po, 3', 7″, 6c, 7s, 5‴, 2'''', is typical for the Ostreopsis genus. It differs from all other Ostreopsis species in that (i) the curved suture between plates 1' and 3' makes them approximately hexagonal, (ii) the 1' plate lies in the left half of the epitheca and is obliquely orientated leading to a characteristic shape of plate 6″. The round thecal pores are bigger than the other two Mediterranean species (O. cf. ovata and O. cf. siamensis). O. fattorussoi is among the smallest species of the genus (DV: 60.07 ± 5.63 µm, AP: 25.66 ± 2.97 µm, W: 39.81 ± 5.05 µm) along with O. ovata. Phylogenetic analyses based on the LSU and internal transcribed spacer rDNA shows that O. fattorussoi belongs to the Atlantic/Mediterranean Ostreopsis spp. clade separated from the other Ostreopsis species. Ostreopsis fattorussoi produces OVTX-a and structural isomers OVTX-d and -e, O. cf. ovata is the only other species of this genus known to produce these toxins. The Lebanese O. fattorussoi did not produce the new palytoxin-like compounds (ovatoxin-i, ovatoxin-j1 , ovatoxin-j2 , and ovatoxin-k) that were previously found in O. fattorussoi from Cyprus. The toxin content was in the range of 0.28-0.94 pg · cell-1 . On the Lebanon coast, O. fattorussoi was recorded throughout the year 2015 (temperature range 18°C-31.5°C), with peaks in June and August.


Asunto(s)
Dinoflagelados/clasificación , Chipre , ADN de Algas/genética , Dinoflagelados/genética , Dinoflagelados/ultraestructura , Líbano , Mar Mediterráneo , Filogenia , Análisis de Secuencia de ADN , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA