Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Antibiot (Tokyo) ; 77(4): 245-256, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38238588

RESUMEN

Tunicamycins (TUN) are well-defined, Streptomyces-derived natural products that inhibit protein N-glycosylation in eukaryotes, and by a conserved mechanism also block bacterial cell wall biosynthesis. TUN inhibits the polyprenylphosphate-N-acetyl-hexosamine-1-phospho-transferases (PNPT), an essential family of enzymes found in both bacteria and eukaryotes. We have previously published the development of chemically modified TUN, called TunR1 and TunR2, that have considerably reduced activity on eukaryotes but that retain the potent antibacterial properties. A mechanism for this reduced toxicity has also been reported. TunR1 and TunR2 have been tested against mammalian cell lines in culture and against live insect cells but, until now, no in vivo evaluation has been undertaken for vertebrates. In the current work, TUN, TunR1, and TunR2 are investigated for their relative toxicity and antimycobacterial activity in zebrafish using a well-established Mycobacterium marinum (M. marinum) infection system, a model for studying human Mycobacterium tuberculosis infections. We also report the relative ability to activate the unfolded protein response (UPR), the known mechanism for the eukaryotic toxicity observed with TUN treatment. Importantly, TunR1 and TunR2 retained their antimicrobial properties, as evidenced by a reduction in M. marinum bacterial burden, compared to DMSO-treated zebrafish. In summary, findings from this study highlight the characteristics of recently developed TUN derivatives, mainly TunR2, and its potential for use as a novel anti-bacterial agent for veterinary and potential medical purposes.


Asunto(s)
Infecciones por Mycobacterium no Tuberculosas , Mycobacterium marinum , Tunicamicina , Animales , Humanos , Antibacterianos/farmacología , Mamíferos , Infecciones por Mycobacterium no Tuberculosas/microbiología , Mycobacterium marinum/fisiología , Tunicamicina/química , Tunicamicina/análogos & derivados , Pez Cebra/microbiología , Fosfotransferasas/química
2.
Infect Immun ; 80(9): 3018-33, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22689819

RESUMEN

Mycobacterium tuberculosis remains a significant global pathogen, causing extensive morbidity and mortality worldwide. This bacterium persists within granulomatous lesions in a poorly characterized, nonreplicating state. The two-component signal transduction systems MprAB and DosRS-DosT (DevRS-Rv2027c) are responsive to conditions likely to be present within granulomatous lesions and mediate aspects of M. tuberculosis persistence in vitro and in vivo. Here, we describe a previously uncharacterized locus, Rv1813c-Rv1812c, that is coregulated by both MprA and DosR. We demonstrate that MprA and DosR bind to adjacent and overlapping sequences within the promoter region of Rv1813c and direct transcription from an initiation site located several hundred base pairs upstream of the Rv1813 translation start site. We further show that Rv1813c and Rv1812c are cotranscribed, and that the genomic organization of this operon is specific to M. tuberculosis and Mycobacterium bovis. Although Rv1813c is not required for survival of M. tuberculosis in vitro, including under conditions in which MprAB and DosRST signaling are activated, an M. tuberculosis ΔRv1813c mutant is attenuated in the low-dose aerosol model of murine tuberculosis, where it exhibits a lower bacterial burden, delayed time to death, and decreased ability to stimulate proinflammatory cytokines interleukin-1ß (IL-1ß) and IL-12. Interestingly, overcomplementation of these phenotypes is observed in the M. tuberculosis ΔRv1813c mutant expressing both Rv1813c and Rv1812c, but not Rv1813c alone, in trans. Therefore, Rv1813c and Rv1812c may represent general stress-responsive elements that are necessary for aspects of M. tuberculosis virulence and the host immune response to infection.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidad , Operón , Proteínas Quinasas/metabolismo , Factores de Virulencia/biosíntesis , Animales , Carga Bacteriana , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN , Modelos Animales de Enfermedad , Femenino , Eliminación de Gen , Orden Génico , Prueba de Complementación Genética , Humanos , Pulmón/microbiología , Ratones , Ratones Endogámicos BALB C , Mycobacterium bovis/genética , Regiones Promotoras Genéticas , Unión Proteica , Análisis de Supervivencia , Sintenía , Sitio de Iniciación de la Transcripción , Tuberculosis Pulmonar/microbiología , Tuberculosis Pulmonar/patología
3.
J Bacteriol ; 193(19): 5105-18, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21821774

RESUMEN

Mycobacterium tuberculosis, the etiological agent of tuberculosis, remains a significant cause of morbidity and mortality throughout the world despite a vaccine and cost-effective antibiotics. The success of this organism can be attributed, in part, to its ability to adapt to potentially harmful stress within the host and establish, maintain, and reactivate from long-term persistent infection within granulomatous structures. The DosRS-DosT/DevRS-Rv2027c, and MprAB two-component signal transduction systems have previously been implicated in aspects of persistent infection by M. tuberculosis and are known to be responsive to conditions likely to be found within the granuloma. Here, we describe initial characterization of a locus (Rv0081-Rv0088) encoding components of a predicted formate hydrogenylase enzyme complex that is directly regulated by DosR/DevR and MprA, and the product of the first gene in this operon, Rv0081. In particular, we demonstrate that Rv0081 negatively regulates its own expression and that of downstream genes by binding an inverted repeat element in its upstream region. In contrast, DosR/DevR and MprA positively regulate Rv0081 expression by binding to recognition sequences that either partially or completely overlap that recognized by Rv0081, respectively. Expression of Rv0081 initiates from two promoter elements; one promoter located downstream of the DosR/DevR binding site but overlapping the sequence recognized by both Rv0081 and MprA and another promoter downstream of the DosR/DevR, Rv0081, and MprA binding sites. Interestingly, Rv0081 represses Rv0081 and downstream determinants following activation of DosRS-DosT/DevRS-Rv2027c by nitric oxide, suggesting that expression of this locus is complex and subject to multiple levels of regulation. Based on this and other published information, a model is proposed detailing Rv0081-Rv0088 expression by these transcription factors within particular growth environments.


Asunto(s)
Proteínas Bacterianas/metabolismo , Formiato Deshidrogenasas/metabolismo , Complejos Multienzimáticos/metabolismo , Mycobacterium tuberculosis/metabolismo , Protamina Quinasa/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Bacterianas/genética , Proteínas de Unión al ADN , Ensayo de Cambio de Movilidad Electroforética , Formiato Deshidrogenasas/genética , Regulación Bacteriana de la Expresión Génica/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Complejos Multienzimáticos/genética , Mutación , Mycobacterium tuberculosis/genética , Protamina Quinasa/genética , Proteínas Quinasas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
4.
PLoS One ; 6(3): e18175, 2011 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-21445360

RESUMEN

Mycobacterium tuberculosis remains a significant global health concern largely due to its ability to persist for extended periods within the granuloma of the host. While residing within the granuloma, the tubercle bacilli are likely to be exposed to stress that can result in formation of aberrant proteins with altered structures. Bacteria encode stress responsive determinants such as proteases and chaperones to deal with misfolded or unfolded proteins. pepD encodes an HtrA-like serine protease and is thought to process proteins altered following exposure of M. tuberculosis to extra-cytoplasmic stress. PepD functions both as a protease and chaperone in vitro, and is required for aspects of M. tuberculosis virulence in vivo. pepD is directly regulated by the stress-responsive two-component signal transduction system MprAB and indirectly by extracytoplasmic function (ECF) sigma factor SigE. Loss of PepD also impacts expression of other stress-responsive determinants in M. tuberculosis. To further understand the role of PepD in stress adaptation by M. tuberculosis, a proteomics approach was taken to identify binding proteins and possible substrates of this protein. Using subcellular fractionation, the cellular localization of wild-type and PepD variants was determined. Purified fractions as well as whole cell lysates from Mycobacterium smegmatis or M. tuberculosis strains expressing a catalytically compromised PepD variant were immunoprecipitated for PepD and subjected to LC-MS/MS analyses. Using this strategy, the 35-kDa antigen encoding a homolog of the PspA phage shock protein was identified as a predominant binding partner and substrate of PepD. We postulate that proteolytic cleavage of the 35-kDa antigen by PepD helps maintain cell wall homeostasis in Mycobacterium and regulates specific stress response pathways during periods of extracytoplasmic stress.


Asunto(s)
Antígenos Bacterianos/inmunología , Proteínas de la Membrana Bacteriana Externa/metabolismo , Mycobacterium tuberculosis/enzimología , Serina Proteasas/metabolismo , Cromatografía Liquida , Epítopos/inmunología , Inmunoprecipitación , Mycobacterium tuberculosis/inmunología , Especificidad por Sustrato , Espectrometría de Masas en Tándem , Técnicas del Sistema de Dos Híbridos
5.
J Bacteriol ; 192(6): 1498-510, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20061478

RESUMEN

Currently, one-third of the world's population is believed to be latently infected with Mycobacterium tuberculosis. The mechanisms by which M. tuberculosis establishes latent infection remain largely undefined. mprAB encodes a two-component signal transduction system required by M. tuberculosis for aspects of persistent infection. MprAB regulates a large and diverse group of genetic determinants in response to membrane stress, including the extracytoplasmic function (ECF) sigma factor sigE and the HtrA-like serine protease pepD. Recent studies have demonstrated that PepD functions as both a protease and chaperone in vitro. In addition, inactivation of pepD alters the virulence of M. tuberculosis in a mouse model system of infection. Here, we demonstrate that PepD plays an important role in the stress response network of Mycobacterium mediated through MprAB and SigE. In particular, we demonstrate that the protease activity of PepD requires the PDZ domain, in addition to the catalytic serine at position 317. pepD expression initiates from at least three promoters in M. tuberculosis, including one that is regulated by SigE and is located upstream of the mprA coding sequence. Deletion of pepD or mprAB in Mycobacterium smegmatis and M. tuberculosis alters the stress response phenotypes of these strains, including increasing sensitivity to SDS and cell wall antibiotics and upregulating the expression of stress-responsive determinants, including sigE. Taking these data together, we hypothesize that PepD utilizes its PDZ domain to recognize and process misfolded proteins at the cell membrane, leading to activation of the MprAB and SigE signaling pathways and subsequent establishment of a positive feedback loop that facilitates bacterial adaptation.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Mycobacterium tuberculosis/metabolismo , Transducción de Señal/fisiología , Estrés Fisiológico/fisiología , Animales , Proteínas Bacterianas/genética , Perfilación de la Expresión Génica , Análisis de Secuencia por Matrices de Oligonucleótidos , Regiones Promotoras Genéticas , Transcripción Genética
6.
PLoS One ; 3(6): e2487, 2008 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-18575611

RESUMEN

BACKGROUND: Francisella tularensis is a gram-negative coccobacillus that causes the febrile illness tularemia. Subspecies that are pathogenic for humans include those comprising the type A (subspecies tularensis) or type B (subspecies holarctica) biovars. An attenuated live vaccine strain (LVS) developed from a type B isolate has previously been used to vaccinate at-risk individuals, but offers limited protection against high dose (>1000 CFUs) challenge with type A strains delivered by the respiratory route. Due to differences between type A and type B F. tularensis strains at the genetic level, it has been speculated that utilization of an attenuated type A strain as a live vaccine might offer better protection against homologous respiratory challenge compared with LVS. Here, we report the construction and characterization of an unmarked Delta purMCD mutant in the highly virulent type A strain Schu S4. METHODOLOGY/PRINCIPAL FINDINGS: Growth of Schu S4 Delta purMCD was severely attenuated in primary human peripheral blood monocyte-derived macrophages and in the A549 human lung epithelial cell line. The Schu S4 Delta purMCD mutant was also highly attenuated in mice when delivered via either the intranasal or intradermal infection route. Mice vaccinated intranasally with Schu S4 Delta purMCD were well protected against high dose intradermal challenge with virulent type A or type B strains of F. tularensis. However, intranasal vaccination with Schu S4 Delta purMCD induced tissue damage in the lungs, and conferred only limited protection against high dose Schu S4 challenge delivered by the same route. The level of protection observed was similar to that conferred following vaccination with wild-type LVS or the analogous LVS Delta purMCD mutant. CONCLUSIONS/SIGNIFICANCE: Collectively, these results argue that development of the next generation live attenuated vaccine for Francisella should be based on use of the less pathogenic type B biovar rather than the more reactogenic type A biovar.


Asunto(s)
Vacunas Bacterianas/inmunología , Francisella tularensis/inmunología , Purinas/inmunología , Administración Intranasal , Animales , Vacunas Bacterianas/administración & dosificación , Línea Celular , Francisella tularensis/genética , Francisella tularensis/patogenicidad , Humanos , Pulmón/microbiología , Macrófagos/microbiología , Ratones , Mutación , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...