Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(28): e202405438, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38682249

RESUMEN

The alkaline oxygen evolution reaction (OER) is a promising avenue for producing clean fuels and storing intermittent energy. However, challenges such as excessive OH- consumption and strong adsorption of oxygen-containing intermediates hinder the development of alkaline OER. In this study, we propose a cooperative strategy by leveraging both nano-scale and atomically local electric fields for alkaline OER, demonstrated through the synthesis of Mn single atom doped CoP nanoneedles (Mn SA-CoP NNs). Finite element method simulations and density functional theory calculations predict that the nano-scale local electric field enriches OH- around the catalyst surface, while the atomically local electric field improves *O desorption. Experimental validation using in situ attenuated total reflection infrared and Raman spectroscopy confirms the effectiveness of the nano-scale and atomically electric fields. Mn SA-CoP NNs exhibit an ultra-low overpotential of 189 mV at 10 mA cm-2 and stable operation over 100 hours at ~100 mA cm-2 during alkaline OER. This innovative strategy provides new insights for enhancing catalyst performance in energy conversion reactions.

2.
J Am Chem Soc ; 146(1): 468-475, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38150583

RESUMEN

The in-tandem catalyst holds great promise for addressing the limitation of low *CO coverage on Cu-based materials for selective C2H4 generation during CO2 electroreduction. However, the potential mismatch between the CO-formation catalyst and the favorable C-C coupling Cu catalyst represents a bottleneck in these types of electrocatalysts, resulting in low tandem efficiencies. In this study, we propose a robust solution to this problem by introducing a wide-CO generation-potential window nickel single atom catalyst (Ni SAC) supported on a Cu catalyst. The selection of Ni SAC was based on theoretical calculations, and its excellent performance was further confirmed by using in situ IR spectroscopy. The facilitated carbon dimerization in our tandem catalyst led to a ∼370 mA/cm2 partial current density of C2H4, corresponding to a faradic efficiency of ∼62%. This performance remained stable and consistent for at least ∼14 h at a high current density of 500 mA/cm2 in a flow-cell reactor, outperforming most tandem catalysts reported so far.

3.
Angew Chem Int Ed Engl ; 62(42): e202309351, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37639659

RESUMEN

Electrocatalytic CO2 reduction reaction (CO2 RR) to multi-carbon products (C2+ ) in acidic electrolyte is one of the most advanced routes for tackling our current climate and energy crisis. However, the competing hydrogen evolution reaction (HER) and the poor selectivity towards the valuable C2+ products are the major obstacles for the upscaling of these technologies. High local potassium ions (K+ ) concentration at the cathode's surface can inhibit proton-diffusion and accelerate the desirable carbon-carbon (C-C) coupling process. However, the solubility limit of potassium salts in bulk solution constrains the maximum achievable K+ concentration at the reaction sites and thus the overall acidic CO2 RR performance of most electrocatalysts. In this work, we demonstrate that Cu nanoneedles induce ultrahigh local K+ concentrations (4.22 M) - thus breaking the K+ solubility limit (3.5 M) - which enables a highly efficient CO2 RR in 3 M KCl at pH=1. As a result, a Faradaic efficiency of 90.69±2.15 % for C2+ (FEC2+ ) can be achieved at 1400 mA.cm-2 , simultaneous with a single pass carbon efficiency (SPCE) of 25.49±0.82 % at a CO2 flow rate of 7 sccm.

4.
Angew Chem Int Ed Engl ; 62(46): e202305651, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37612240

RESUMEN

Tetrafluoromethane (CF4 ), the simplest perfluorocarbon (PFC), has the potential to exacerbate global warming. Catalytic hydrolysis is a viable method to degrade CF4 , but fluorine poisoning severely restricts both the catalytic performance and catalyst lifetime. In this study, Ga is introduced to effectively assists the defluorination of poisoned Al active sites, leading to highly efficient CF4 decomposition at 600 °C with a catalytic lifetime exceeding 1,000 hours. 27 Al and 71 Ga magic-angle spinning nuclear magnetic resonance spectroscopy (MAS NMR) showed that the introduced Ga exists as tetracoordinated Ga sites (GaIV ), which readily dissociate water to form Ga-OH. In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and density function theory (DFT) calculations confirmed that Ga-OH assists the defluorination of poisoned Al active sites via a dehydration-like process. As a result, the Ga/Al2 O3 catalyst achieved 100 % CF4 decomposition keeping an ultra-long catalytic lifetime and outperforming reported results. This work proposes a new approach for efficient and long-term CF4 decomposition by promoting the regeneration of active sites.

5.
Adv Mater ; 35(21): e2300695, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36929182

RESUMEN

Main group single atom catalysts (SACs) are promising for CO2 electroreduction to CO by virtue of their ability in preventing the hydrogen evolution reaction and CO poisoning. Unfortunately, their delocalized orbitals reduce the CO2 activation to *COOH. Herein, an O doping strategy to localize electrons on p-orbitals through asymmetric coordination of Ca SAC sites (Ca-N3 O) is developed, thus enhancing the CO2 activation. Theoretical calculations indicate that asymmetric coordination of Ca-N3 O improves electron-localization around Ca sites and thus promotes *COOH formation. X-ray absorption fine spectroscopy shows the obtained Ca-N3 O features: one O and three N coordinated atoms with one Ca as a reactive site. In situ attenuated total reflection infrared spectroscopy proves that Ca-N3 O promotes *COOH formation. As a result, the Ca-N3 O catalyst exhibits a state-of-the-art turnover frequency of ≈15 000 per hour in an H-cell and a large current density of -400 mA cm-2 with a CO Faradaic efficiency (FE) ≥ 90% in a flow cell. Moreover, Ca-N3 O sites retain a FE above 90% even with a 30% diluted CO2 concentration.

6.
Angew Chem Int Ed Engl ; 62(9): e202217026, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36577697

RESUMEN

Photoelectrochemical (PEC) water splitting is a promising approach for renewable solar light conversion. However, surface Fermi level pinning (FLP), caused by surface trap states, severely restricts the PEC activities. Theoretical calculations indicate subsurface oxygen vacancy (sub-Ov ) could release the FLP and retain the active structure. A series of metal oxide semiconductors with sub-Ov were prepared through precisely regulated spin-coating and calcination. Etching X-ray photoelectron spectroscopy (XPS), scanning transmission electron microscopy (STEM), and electron energy loss spectra (EELS) demonstrated Ov located at sub ∼2-5 nm region. Mott-Schottky and open circuit photovoltage results confirmed the surface trap states elimination and Fermi level de-pinning. Thus, superior PEC performances of 5.1, 3.4, and 2.1 mA cm-2 at 1.23 V vs. RHE were achieved on BiVO4 , Bi2 O3 , TiO2 with outstanding stability for 72 h, outperforming most reported works under the identical conditions.

7.
Nano Lett ; 22(15): 6276-6284, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35913397

RESUMEN

Silver is an attractive catalyst for converting CO2 into CO. However, the high CO2 activation barrier and the hydrogen evolution side reaction seriously limit its practical application and industrial perspective. Here, an ordered Ag nanoneedle array (Ag-NNAs) was prepared by template-assisted vacuum thermal-evaporation for CO2 electroreduction into CO. The nanoneedle array structure induces a strong local electric field at the tips, which not only reduces the activation barrier for CO2 electroreduction but also increases the energy barrier for the hydrogen evolution reaction (HER). Moreover, the array structure endows a high surface hydrophobicity, which can regulate the adsorption of water molecules at the interface and thus dynamically inhibit the competitive HER. As a result, the optimal Ag-NNAs exhibits 91.4% Faradaic efficiency (FE) of CO for over 700 min at -1.0 V vs RHE. This work provides a new concept for the application of nanoneedle array structures in electrocatalytic CO2 reduction reactions.

8.
ChemElectroChem ; 9(4): e202101696, 2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35875253

RESUMEN

DNA has emerged as the material of choice for producing supramolecular building blocks of arbitrary geometry from the 'bottom up'. Characterisation of these structures via electron or atomic force microscopy usually requires their surface immobilisation. In this work, we developed a nanoimpact electrochemistry platform to detect DNA self-assembled origami structures in solution, using the intercalator methylene blue as a redox probe. Here, we report the electrochemical detection of single DNA origami collisions at Pt microelectrodes. Our work paves the way towards the characterisation of DNA nanostructures in solution via nanoimpact electrochemistry.

9.
J Phys Chem Lett ; 13(28): 6475-6480, 2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35816759

RESUMEN

Gold nanoclusters (AuNCs) are atomic architectures that can be precisely tailored for catalytic applications. In this work, we studied two benchmark AuNCs, Au25(SR)18 and Au144(SR)60, covered by aromatic and aliphatic ligands to envision how the 3D structure of the ligand impacts the stability of the nanomaterial. Surprisingly, we found that increasing the alkanethiol length has a poor or null effect on the stability of the AuNCs, a trend opposite to that on Au(111) surfaces. When considering the aromatic or aliphatic nature, the AuNC stability follows the same trend as on Au(111): the thermodynamical stability is dictated by the ligand density rather than its chemical nature, where the aliphatic ligand imparts more stability than the aromatic one. Our findings provide a tool to predict how an ultrasmall gold core can interact with the environment, substrate, and themselves according to the stability of its protecting ligand shell.


Asunto(s)
Oro , Nanopartículas del Metal , Catálisis , Oro/química , Ligandos , Nanopartículas del Metal/química
10.
Angew Chem Int Ed Engl ; 61(4): e202113664, 2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-34822728

RESUMEN

Ruthenium (Ru)-based catalysts, with considerable performance and desirable cost, are becoming highly interesting candidates to replace platinum (Pt) in the alkaline hydrogen evolution reaction (HER). The hydrogen binding at Ru sites (Ru-H) is an important factor limiting the HER activity. Herein, density functional theory (DFT) simulations show that the essence of Ru-H binding energy is the strong interaction between the 4 d z 2 orbital of Ru and the 1s orbital of H. The charge transfer between Ru sites and substrates (Co and Ni) causes the appropriate downward shift of the 4 d z 2 -band center of Ru, which results in a Gibbs free energy of 0.022 eV for H* in the RuCo system, much lower than the 0.133 eV in the pure Ru system. This theoretical prediction has been experimentally confirmed using RuCo alloy-nanosheets (RuCo ANSs). They were prepared via a fast co-precipitation method followed with a mild electrochemical reduction. Structure characterizations reveal that the Ru atoms are embedded into the Co substrate as isolated active sites with a planar symmetric and Z-direction asymmetric coordination structure, obtaining an optimal 4 d z 2 modulated electronic structure. Hydrogen sensor and temperature program desorption (TPD) tests demonstrate the enhanced Ru-H interactions in RuCo ANSs compared to those in pure Ru nanoparticles. As a result, the RuCo ANSs reach an ultra-low overpotential of 10 mV at 10 mA cm-2 and a Tafel slope of 20.6 mV dec-1 in 1 M KOH, outperforming that of the commercial Pt/C. This holistic work provides a new insight to promote alkaline HER by optimizing the metal-H binding energy of active sites.

11.
Sci Adv ; 6(38)2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32948584

RESUMEN

Electron transfer to an individual quantum dot promotes the formation of charged excitons with enhanced recombination pathways and reduced lifetimes. Excitons with only one or two extra charges have been observed and exploited for very efficient lasing or single-quantum dot light-emitting diodes. Here, by room-temperature time-resolved experiments on individual giant-shell CdSe/CdS quantum dots, we show the electrochemical formation of highly charged excitons containing more than 12 electrons and 1 hole. We report the control over intensity blinking, along with a deterministic manipulation of quantum dot photodynamics, with an observed 210-fold increase in the decay rate, accompanied by 12-fold decrease in the emission intensity, while preserving single-photon emission characteristics. These results pave the way for deterministic control over the charge state, and room-temperature decay rate engineering for colloidal quantum dot-based classical and quantum communication technologies.

12.
ACS Nano ; 14(2): 2456-2464, 2020 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-31995353

RESUMEN

Research on optically resonant dielectric nanostructures has accelerated the development of photonic applications, driven by their ability to strongly confine light on the nanoscale. However, as dielectric resonators are typically operated below their band gap to minimize optical losses, the usage of dielectric nanoantenna concepts for absorption enhancement has largely remained unexplored. In this work, we realize engineered nanoantennas composed of photocatalytic dielectrics and demonstrate increased light-harvesting capabilities in otherwise weakly absorptive spectral regions. In particular, we employ anapole excitations, which are known for their strong light confinement, in nanodisks of oxygen-vacancy-rich TiO2-x, a prominent photocatalyst that provides a powerful platform for exploring concepts in absorption enhancement in tunable nanostructures. The arising photocatalytic effect is monitored on the single particle level using the well-established photocatalytic silver reduction reaction on TiO2. With the freedom of changing the optical properties of TiO2 through tuning the abundance of VO states, we discuss the interplay between cavity damping and the anapole-assisted field confinement for absorption enhancement. This concept is general and can be extended to other catalytic materials with higher refractive indices.

13.
Faraday Discuss ; 214(0): 73-87, 2019 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-30810127

RESUMEN

Plasmon excitation in metal nanoparticles triggers the generation of highly energetic charge carriers that, when properly manipulated and exploited, can mediate chemical reactions. Single-particle techniques are key to unearthing the underlying mechanisms of hot-carrier generation, transport and injection, as well as to disentangling the role of the temperature increase and the enhanced near-field at the nanoparticle-molecule interface. Gaining nanoscopic insight into these processes and their interplay could aid in the rational design of plasmonic photocatalysts. Here, we present three different approaches to monitor hot-carrier reactivity at the single-particle level. We use a combination of dark-field microscopy and photoelectrochemistry to track a hot-hole driven reaction on a single Au nanoparticle. We image hot-electron reactivity with sub-particle spatial resolution using nanoscopy techniques. Finally, we push the limits by looking for a hot-electron induced chemical reaction that generates a fluorescent product, which should enable imaging plasmonic photocatalysis at the single-particle and single-molecule levels.

14.
Nano Lett ; 19(3): 1867-1874, 2019 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-30789274

RESUMEN

Plasmonic hot carriers have been recently identified as key elements for photocatalysis at visible wavelengths. The possibility to transfer energy between metal plasmonic nanoparticles and nearby molecules depends not only on carrier generation and collection efficiencies but also on their energy at the metal-molecule interface. Here an energy screening study was performed by monitoring the aniline electro-polymerization reaction via an illuminated 80 nm gold nanoparticle. Our results show that plasmon excitation reduces the energy required to start the polymerization reaction as much as 0.24 eV. Three possible photocatalytic mechanisms were explored: the enhanced near field of the illuminated particle, the temperature increase at the metal-liquid interface, and the excited electron-hole pairs. This last phenomenon is found to be the one contributing most prominently to the observed energy reduction.

15.
Nanoscale ; 10(42): 19791-19798, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30328885

RESUMEN

The functionalities offered by single-molecule electrical junctions are yet to be translated into monolayer or few-layer molecular films, where making effective and reproducible electrical contact is one of the challenging bottlenecks. Here we take a significant step in this direction by demonstrating that excellent electrical contact can be made with a monolayer biphenyl-4,4'-dithiol (BPDT) molecular film, sandwiched between gold and graphene electrodes. This sandwich device structure is advantageous, because the current flows through the molecules to the gold substrate in a 'cross-plane' manner, perpendicular to the plane of graphene, yielding high-conductance devices. We elucidate the nature of the cross-plane graphene/molecule/Au transport using quantum transport calculations and introduce a simple analytical model, which captures generic features of the current-voltage characteristic. Asymmetry in junction properties results from the disparity in electrode electrical properties, the alignment of the BPDT HOMO-LUMO energy levels and the specific characteristics of the graphene electrode. The experimental observation of scalability of junction properties within the junction area, in combination with a theoretical description of the transmission probability of the thiol-graphene contact, demonstrates that between 10% and 100% of the molecules make contact with the electrodes, which is several orders of magnitude greater than that achieved to date in the literature.

16.
Langmuir ; 34(20): 5696-5702, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29715033

RESUMEN

The electronic structure of aromatic and aliphatic thiols on Au(111) has been extensively studied in relation to possible applications in molecular electronics. In this work, the effect on the electronic structure of an additional anchor to the S-Au bond using 6-mercaptopurine as a model system has been investigated. Results from X-ray photoelectron spectroscopy, near-edge X-ray absorption fine structure spectroscopy, and density functional theory (DFT) confirm that this molecule adsorbs on Au(111) with S-Au and iminic N-Au bonds. Combined ultraviolet photoelectron spectroscopy and DFT data reveal that formation of the 6MP self-assembled monolayer generates a molecular dipole perpendicular to the surface, with negative charges residing at the metal/monolayer interface and positive charges at the monolayer/vacuum interface, which lowers the substrate work function. Scanning tunneling microscopy shows two surface molecular domains: a well-ordered rectangular lattice where molecules are tilted on average 30° with respect to the substrate and aligned 6MP islands where molecules are standing upright. Finally, we found a new electronic state located at -1.7 eV with respect to the Fermi level that corresponds to a localized π molecular state, while the state corresponding to the N-Au bond is hybridized with Au d electrons and stabilized at much lower energies (-3 eV).

17.
J Phys Chem Lett ; 9(1): 57-62, 2018 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-29232520

RESUMEN

Small metal nanoparticles (NPs) with core-sizes ranging from 1 to 3 nm constitute a bridge between molecules and colloids with unique electronic, catalytic, and other properties. Many applications entail immobilization onto solid supports, but while NP behavior in solution is well studied, the effect of the interaction between NPs and the substrate surface is understood less. Here, we follow the structural evolution of thiolated monolayer-protected AuNPs on Au(111) substrates at the single-particle level in real-time using high-resolution in situ scanning tunneling microscopy. We show how the reactivity of the substrate affects the stability of the immobilized NPs and how their structural identity can be preserved. Entropically driven redistribution of the NP's protective capping layer is an important element in the disintegration process and at the same time rather generic. Our findings may thus have wider implications on the design and optimization of functional surfaces involving NPs, made of materials other than Au.

18.
Angew Chem Int Ed Engl ; 57(1): 310-313, 2018 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-29149495

RESUMEN

There has been increasing interest in the development of small molecules that can selectively bind to G-quadruplex DNA structures. The latter have been associated with a number of key biological processes and therefore are proposed to be potential targets for drug development. Herein, we report the first example of a reduction-activated G-quadruplex DNA binder. We show that a new octahedral platinum(IV)-salphen complex does not interact with DNA in aqueous media at pH 7.4; however, upon addition of bioreductants such as ascorbic acid or glutathione, the compound is readily reduced to the corresponding square planar platinum(II) complex. In contrast to the parent platinum(IV) complex, the in situ generated platinum(II) complex has good affinity for G-quadruplex DNA.


Asunto(s)
Complejos de Coordinación/química , ADN/química , G-Cuádruplex , Fenilendiaminas/química , Platino (Metal)/química , Ácido Ascórbico/química , Dicroismo Circular , Complejos de Coordinación/síntesis química , Glutatión/química , Peróxido de Hidrógeno/química , Concentración de Iones de Hidrógeno , Ligandos , Espectroscopía de Resonancia Magnética/métodos , Oxidación-Reducción , Agua
19.
Chemphyschem ; 18(7): 804-811, 2017 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-28067985

RESUMEN

The dynamics of the self-assembly process of thiol molecules on Au(111) is affected by the interplay between molecule-substrate and molecule-molecule interactions. Therefore, it is interesting to explore the effect of a second anchor to the gold surface, in addition to the S atom, on both the order and the feasibility of phase transitions in self-assembled monolayers. To assess the role of an additional O anchor, we have compared the adsorption of two mercaptobenzoic acid isomers, 2-mercaptobenzoic acid (2-MBA) and 4-mercaptobenzoic acid (4-MBA), on Au(111). Results from scanning tunneling microscopy, X-ray photoelectron spectroscopy, electrochemical techniques, and density functional theory calculations show that the additional O anchor in 2-MBA hinders surface mobility, reducing domain size and impeding the molecular reorganization involved in phase transition to denser phases on the Au(111) substrates. This knowledge can help to predict the range order and molecular density of the thiol SAM depending on the chemical structure of the adsorbate.

20.
Phys Chem Chem Phys ; 14(35): 12355-67, 2012 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-22870508

RESUMEN

A combination of Polarization Modulation Infrared Reflection Absorption Spectroscopy (PMIRRAS) under electrochemical control, Electrochemical Scanning Tunneling Microscopy (ECSTM) and Molecular Dynamics (MD) simulations has been used to shed light on the reductive desorption process of dodecanethiol (C12) and octadecanethiol (C18) SAMs on gold in aqueous electrolytes. Experimental PMIRRAS, ECSTM and MD simulations data for C12 desorption are consistent with formation of randomly distributed micellar aggregates stabilized by Na(+) ions, coexisting with a lying-down phase of molecules. The analysis of pit and Au island coverage before and after desorption is consistent with the thiolate-Au adatoms models. On the other hand, PMIRRAS and MD data for C18 indicate that the desorbed alkanethiolates adopt a Na(+) ion-stabilized bilayer of interdigitated alkanethiolates, with no evidence of lying down molecules. MD simulations also show that both the degree of order and tilt angle of the desorbed alkanethiolates change with the surface charge on the metal, going from bilayers to micelles. These results demonstrate the complexity of the alkanethiol desorption in the presence of water and the fact that chain length and counterions play a key role in a complex structure.


Asunto(s)
Alcanos/química , Oro/química , Compuestos de Sulfhidrilo/química , Adsorción , Técnicas Electroquímicas , Simulación de Dinámica Molecular , Propiedades de Superficie , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...