Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mov Ecol ; 12(1): 16, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38360667

RESUMEN

BACKGROUND: Natal dispersal, the distance between site of birth and site of first breeding, has a fundamental role in population dynamics and species' responses to environmental changes. Population density is considered a key driver of natal dispersal. However, few studies have been able to examine densities at both the natal and the settlement site, which is critical for understanding the role of density in dispersal. Additionally, the role of density on natal dispersal remains poorly understood in long-lived and slowly reproducing species, due to their prolonged dispersal periods and often elusive nature. We studied the natal dispersal of the white-tailed eagle (Haliaeetus albicilla) in response to local breeder densities. We investigated the effects of the number of active territories around the natal site on (a) natal dispersal distance and (b) the difference between natal and settlement site breeder density. We were interested in whether eagles showed tendencies of conspecific attraction (positive density-dependence) or intraspecific competition (negative density-dependence) and how this related to settlement site breeder density. METHODS: We used a combination of long-term visual and genotypic identification to match individuals from their breeding site to their natal nest. We identified natal dispersal events for 355 individuals hatched between 1984 and 2015 in the Baltic Sea coast and Arctic areas of Finland. Of those, 251 were identified by their genotype. RESULTS: Individuals born in high-density areas dispersed shorter distances than those born in low-density areas, but settled at lower density breeding sites in comparison to their natal site. Eagles born in low natal area densities dispersed farther but settled in higher density breeding sites compared to their natal site. CONCLUSIONS: We show that eagles might be attracted by conspecifics (positive density-dependence) to identify high-quality habitats or find mates, but do not settle in the most densely populated areas. This indicates that natal dispersal is affected by an interplay of conspecific attraction and intraspecific competition, which has implications for population dynamics of white-tailed eagles, but also other top predators. Furthermore, our study demonstrates the value of long-term collection of both nestling and (non-invasive) adult DNA samples, and thereafter using genotype matching to identify individuals in long-lived and elusive species.

2.
J Anim Ecol ; 92(4): 850-862, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36721964

RESUMEN

Early-life conditions can have long-term fitness consequences. However, it is still unclear what optimal rearing conditions are, especially for long-lived carnivores. A more diverse diet ('balanced diet') might optimize nutrient availability and allow young to make experiences with a larger diversity of prey, whereas a narrow diet breadth ('specialized diet') might result in overall higher energy net gain. A diet that is dominated by a specific prey type (i.e. fish, 'prey type hypothesis') might be beneficial or detrimental, depending for example, on its toxicity or contaminant load. Generalist predators such as the white-tailed eagle Haliaeetus albicilla provide an interesting possibility to examine the relationship between early life diet and long-term offspring survival. In the Åland Islands, an archipelago in the Baltic Sea, white-tailed eagles live in various coastal habitats and feed on highly variable proportions of birds and fish. We use data from 21,116 prey individuals that were collected from 120 territories during the annual surveys, to examine how early-life diet is associated with apparent annual survival of 574 ringed and molecular-sexed eaglets. We supplement this analysis by assessing the relationships between diet, reproductive performance and nestling physical condition, to consider whether they are confounding with possible long-term associations. We find that early-life diet is associated with long-term fitness: Nestlings that are fed a diverse diet are in lower physical condition but have higher survival rates. Eagles that are fed more fish as nestlings have lower survival as breeding-age adults, but territories associated with fish-rich diets have higher breeding success. Our results show that young carnivores benefit from a high diversity of prey in their natal territory, either through a nutritional or learning benefit, explaining the higher survival rates. The strong relationship between early-life diet and adult survival suggests that early life shapes adult foraging decisions and that eating fish is associated with high costs. This could be due to high levels of contaminants or high competition for fish-rich territories. Long-lasting consequences of early-life diet are likely not only limited to individual-level consequences but have the potential to drive eco-evolutionary dynamics in this population.


Asunto(s)
Águilas , Ecosistema , Animales , Dieta , Conducta Predatoria , Reproducción , Longevidad/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...