RESUMEN
BACKGROUND: Disruptive behavior in children and adolescents can manifest as reactive aggression and proactive aggression and is modulated by callous-unemotional traits and other comorbidities. Neural correlates of these aggression dimensions or subtypes and comorbid symptoms remain largely unknown. This multi-center study investigated the relationship between resting state functional connectivity (rsFC) and aggression subtypes considering comorbidities. METHODS: The large sample of children and adolescents aged 8-18 years (n = 207; mean age = 13.30±2.60 years, 150 males) included 118 cases with disruptive behavior (80 with Oppositional Defiant Disorder and/or Conduct Disorder) and 89 controls. Attention-deficit/hyperactivity disorder (ADHD) and anxiety symptom scores were analyzed as covariates when assessing group differences and dimensional aggression effects on hypothesis-free global and local voxel-to-voxel whole-brain rsFC based on functional magnetic resonance imaging at 3 Tesla. RESULTS: Compared to controls, the cases demonstrated altered rsFC in frontal areas, when anxiety but not ADHD symptoms were controlled for. For cases, reactive and proactive aggression scores were related to global and local rsFC in the central gyrus and precuneus, regions linked to aggression-related impairments. Callous-unemotional trait severity was correlated with ICC in the inferior and middle temporal regions implicated in empathy, emotion, and reward processing. Most observed aggression subtype-specific patterns could only be identified when ADHD and anxiety were controlled for. CONCLUSIONS: This study clarifies that hypothesis-free brain connectivity measures can disentangle distinct though overlapping dimensions of aggression in youths. Moreover, our results highlight the importance of considering comorbid symptoms to detect aggression-related rsFC alterations in youths.
Asunto(s)
Trastorno de la Conducta , Problema de Conducta , Masculino , Niño , Adolescente , Humanos , Trastorno de la Conducta/diagnóstico por imagen , Agresión/psicología , Emociones , Encéfalo/diagnóstico por imagenRESUMEN
BACKGROUND: Disruptive behavior disorders (DBD) are heterogeneous at the clinical and the biological level. Therefore, the aims were to dissect the heterogeneous neurodevelopmental deviations of the affective brain circuitry and provide an integration of these differences across modalities. METHODS: We combined two novel approaches. First, normative modeling to map deviations from the typical age-related pattern at the level of the individual of (i) activity during emotion matching and (ii) of anatomical images derived from DBD cases (n = 77) and controls (n = 52) aged 8-18 years from the EU-funded Aggressotype and MATRICS consortia. Second, linked independent component analysis to integrate subject-specific deviations from both modalities. RESULTS: While cases exhibited on average a higher activity than would be expected for their age during face processing in regions such as the amygdala when compared to controls these positive deviations were widespread at the individual level. A multimodal integration of all functional and anatomical deviations explained 23% of the variance in the clinical DBD phenotype. Most notably, the top marker, encompassing the default mode network (DMN) and subcortical regions such as the amygdala and the striatum, was related to aggression across the whole sample. CONCLUSIONS: Overall increased age-related deviations in the amygdala in DBD suggest a maturational delay, which has to be further validated in future studies. Further, the integration of individual deviation patterns from multiple imaging modalities allowed to dissect some of the heterogeneity of DBD and identified the DMN, the striatum and the amygdala as neural signatures that were associated with aggression.
Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Agresión/psicología , Emociones , Déficit de la Atención y Trastornos de Conducta Disruptiva , Mapeo EncefálicoRESUMEN
BACKGROUND: Brain imaging studies have shown altered amygdala activity during emotion processing in children and adolescents with oppositional defiant disorder (ODD) and conduct disorder (CD) compared to typically developing children and adolescents (TD). Here we aimed to assess whether aggression-related subtypes (reactive and proactive aggression) and callous-unemotional (CU) traits predicted variation in amygdala activity and skin conductance (SC) response during emotion processing. METHODS: We included 177 participants (n = 108 cases with disruptive behaviour and/or ODD/CD and n = 69 TD), aged 8-18 years, across nine sites in Europe, as part of the EU Aggressotype and MATRICS projects. All participants performed an emotional face-matching functional magnetic resonance imaging task. RESULTS: Differences between cases and TD in affective processing, as well as specificity of activation patterns for aggression subtypes and CU traits, were assessed. Simultaneous SC recordings were acquired in a subsample (n = 63). Cases compared to TDs showed higher amygdala activity in response to negative faces (fearful and angry) v. shapes. Subtyping cases according to aggression-related subtypes did not significantly influence on amygdala activity; while stratification based on CU traits was more sensitive and revealed decreased amygdala activity in the high CU group. SC responses were significantly lower in cases and negatively correlated with CU traits, reactive and proactive aggression. CONCLUSIONS: Our results showed differences in amygdala activity and SC responses to emotional faces between cases with ODD/CD and TD, while CU traits moderate both central (amygdala) and peripheral (SC) responses. Our insights regarding subtypes and trait-specific aggression could be used for improved diagnostics and personalized treatment.
Asunto(s)
Trastorno de la Conducta , Problema de Conducta , Adolescente , Agresión/psicología , Amígdala del Cerebelo/diagnóstico por imagen , Déficit de la Atención y Trastornos de Conducta Disruptiva , Niño , Emociones/fisiología , HumanosRESUMEN
There is increasing evidence for altered brain resting state functional connectivity in adolescents with disruptive behavior. While a considerable body of behavioral research points to differences between reactive and proactive aggression, it remains unknown whether these two subtypes have dissociable effects on connectivity. Additionally, callous-unemotional traits are important specifiers in subtyping aggressive behavior along the affective dimension. Accordingly, we examined associations between two aggression subtypes along with callous-unemotional traits using a seed-to-voxel approach. Six functionally relevant seeds were selected to probe the salience and the default mode network, based on their presumed role in aggression. The resting state sequence was acquired from 207 children and adolescents of both sexes [mean age (standard deviation) = 13.30 (2.60); range = 8.02-18.35] as part of a Europe-based multi-center study. One hundred eighteen individuals exhibiting disruptive behavior (conduct disorder/oppositional defiant disorder) with varying comorbid attention-deficit/hyperactivity disorder (ADHD) symptoms were studied, together with 89 healthy controls. Proactive aggression was associated with increased left amygdala-precuneus coupling, while reactive aggression related to hyper-connectivities of the posterior cingulate cortex (PCC) to the parahippocampus, the left amygdala to the precuneus and to hypo-connectivity between the right anterior insula and the nucleus caudate. Callous-unemotional traits were linked to distinct hyper-connectivities to frontal, parietal, and cingulate areas. Additionally, compared to controls, cases demonstrated reduced connectivity of the PCC and left anterior insula to left frontal areas, the latter only when controlling for ADHD scores. Taken together, this study revealed aggression-subtype-specific patterns involving areas associated with emotion, empathy, morality, and cognitive control.
Asunto(s)
Trastorno de la Conducta , Problema de Conducta , Adolescente , Agresión , Amígdala del Cerebelo , Déficit de la Atención y Trastornos de Conducta Disruptiva , Niño , Trastorno de la Conducta/diagnóstico por imagen , Femenino , Humanos , Imagen por Resonancia Magnética , MasculinoRESUMEN
Maladaptive aggression, as present in conduct disorder (CD) and, to a lesser extent, oppositional defiant disorder (ODD), has been associated with structural alterations in various brain regions, such as ventromedial prefrontal cortex (vmPFC), anterior cingulate cortex (ACC), amygdala, insula and ventral striatum. Although aggression can be subdivided into reactive and proactive subtypes, no neuroimaging studies have yet investigated if any structural brain alterations are associated with either of the subtypes specifically. Here we investigated associations between aggression subtypes, CU traits and ADHD symptoms in predefined regions of interest. T1-weighted magnetic resonance images were acquired from 158 children and adolescents with disruptive behavior (ODD/CD) and 96 controls in a multi-center study (aged 8-18). Aggression subtypes were assessed by questionnaires filled in by participants and their parents. Cortical volume and subcortical volumes and shape were determined using Freesurfer and the FMRIB integrated registration and segmentation tool. Associations between volumes and continuous measures of aggression were established using multilevel linear mixed effects models. Proactive aggression was negatively associated with amygdala volume (b = -10.7, p = 0.02), while reactive aggression was negatively associated with insula volume (b = -21.7, p = 0.01). No associations were found with CU traits or ADHD symptomatology. Classical group comparison showed that children and adolescents with disruptive behavior had smaller volumes than controls in (bilateral) vmPFC (p = 0.003) with modest effect size and a reduced shape in the anterior part of the left ventral striatum (p = 0.005). Our study showed negative associations between reactive aggression and volumes in a region involved in threat responsivity and between proactive aggression and a region linked to empathy. This provides evidence for aggression subtype-specific alterations in brain structure which may provide useful insights for clinical practice.
Asunto(s)
Trastorno de la Conducta , Problema de Conducta , Adolescente , Agresión , Amígdala del Cerebelo , Déficit de la Atención y Trastornos de Conducta Disruptiva/diagnóstico por imagen , Niño , Trastorno de la Conducta/diagnóstico por imagen , Humanos , Imagen por Resonancia MagnéticaRESUMEN
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMEN
Objectives: Executive functioning and emotion recognition may be impaired in disruptive youth, yet findings in oppositional defiant disorder (ODD) and conduct disorder (CD) are inconsistent. We examined these functions related to ODD and CD, accounting for comorbid attention-deficit/hyperactivity disorder (ADHD) and internalising symptoms.Methods: We compared executive functioning (visual working memory, visual attention, inhibitory control) and emotion recognition between youth (8-18 years old, 123 boys, 55 girls) with ODD (n = 44) or CD (with/without ODD, n = 48), and healthy controls (n = 86). We also related ODD, CD, and ADHD symptom counts and internalising symptomatology to all outcome measures, as well as executive functioning to emotion recognition.Results: Visual working memory and inhibitory control were impaired in the ODD and CD groups versus healthy controls. Anger, disgust, fear, happiness, and sadness recognition were impaired in the CD group; only anger recognition was impaired in the ODD group. Deficits were not explained by comorbid ADHD or internalising symptoms. Visual working memory was associated with recognition of all basic emotions.Conclusions: Our findings challenge the view that neuropsychological impairments in youth with ODD/CD are driven by comorbid ADHD and suggest possible distinct neurocognitive mechanisms in CD versus ODD.
Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Trastorno de la Conducta , Adolescente , Trastorno por Déficit de Atención con Hiperactividad/epidemiología , Déficit de la Atención y Trastornos de Conducta Disruptiva/epidemiología , Niño , Comorbilidad , Trastorno de la Conducta/epidemiología , Emociones , Función Ejecutiva , Femenino , Humanos , MasculinoRESUMEN
We systematically analyzed postzygotic mutations (PZMs) in whole-exome sequences from the largest collection of trios (5,947) with autism spectrum disorder (ASD) available, including 282 unpublished trios, and performed resequencing using multiple independent technologies. We identified 7.5% of de novo mutations as PZMs, 83.3% of which were not described in previous studies. Damaging, nonsynonymous PZMs within critical exons of prenatally expressed genes were more common in ASD probands than controls (P < 1 × 10-6), and genes carrying these PZMs were enriched for expression in the amygdala (P = 5.4 × 10-3). Two genes (KLF16 and MSANTD2) were significantly enriched for PZMs genome-wide, and other PZMs involved genes (SCN2A, HNRNPU and SMARCA4) whose mutation is known to cause ASD or other neurodevelopmental disorders. PZMs constitute a significant proportion of de novo mutations and contribute importantly to ASD risk.
Asunto(s)
Trastorno del Espectro Autista/genética , Bases de Datos Genéticas/tendencias , Variación Genética/genética , Mutación Missense/genética , Predisposición Genética a la Enfermedad/genética , Humanos , Mosaicismo , Cigoto/fisiologíaRESUMEN
In children and adolescents with conduct disorder (CD), pharmacotherapy is considered when non-pharmacological interventions do not improve symptoms and functional impairment. Risperidone, a second-generation antipsychotic is increasingly prescribed off-label in this indication, but its efficacy and tolerability is poorly studied in CD, especially in young people with normal intelligence. The Paediatric European Risperidone Studies (PERS) include a series of trials to assess short-term efficacy, tolerability and maintenance effects of risperidone in children and adolescents with CD and normal intelligence as well as long-term tolerability in a 2-year pharmacovigilance. In addition to its core studies, secondary PERS analyses will examine moderators of drug effects. As PERS is a large-scale academic project involving a collaborative network of expert centres from different countries, it is expected that results will lead to strengthen the evidence base for the use of risperidone in CD and improve standards of care. Challenging issues faced by the PERS consortium are described to facilitate future developments in paediatric neuropsychopharmacology.