Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
ACS Appl Mater Interfaces ; 16(22): 28230-28244, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38775439

RESUMEN

Electrospun (e-spun) fibers are generally regarded as powerful tools for cell growth in tissue regeneration applications, and the possibility of imparting functional properties to these materials represents an increasingly pursued goal. We report herein the preparation of hybrid materials in which an e-spun d,l-polylactic acid matrix, to which chitosan or crystalline nanocellulose was added to improve hydrophilicity, was loaded with different amounts of silver(0) nanoparticles (AgNP) generated onto chestnut shell lignin (CSL) (AgNP@CSL). A solvent-free mechanochemical method was used for efficient (85% of the theoretical value by XRD analysis) Ag(0) production from the reduction of AgNO3 by lignin. For comparison, e-spun fibers containing CSL alone were also prepared. SEM and TEM analyses confirmed the presence of AgNP@CSL (average size 30 nm) on the fibers. Different chemical assays indicated that the AgNP@CSL containing fibers exhibited marked antioxidant properties (EC50 1.6 ± 0.1 mg/mL, DPPH assay), although they were halved with respect to those of the CSL containing fibers, as expected because of the efficient silver ion reduction. All the fibers showed high cytocompatibility toward human mesenchymal stem cells (hMSCs) representative of the self-healing process, and their antibacterial properties were tested against the pathogens Escherichia coli (E. coli), Staphylococcus epidermidis, and Pseudomonas aeruginosa. Finally, competitive surface colonization as simulated by cocultures of hMSC and E. coli showed that AgNP@CSL loaded fibers offered the cells a targeted protection from infection, thus well balancing cytocompatibility and antibacterial properties.


Asunto(s)
Antibacterianos , Antioxidantes , Lignina , Nanopartículas del Metal , Poliésteres , Plata , Plata/química , Plata/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Poliésteres/química , Poliésteres/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Nanopartículas del Metal/química , Humanos , Lignina/química , Lignina/farmacología , Escherichia coli/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología
2.
Chempluschem ; : e202300599, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38507283

RESUMEN

Hyaluronic acid (HA) is a natural, non-sulfated glycosaminoglycan (GAG) present in ECM. It is involved in different biological functions with appealing properties in cosmetics and pharmaceutical preparations as well as in tissue engineering. Generally, HA has been electrospun in blends with natural or synthetic polymers to produce fibers having diameters in the order of nano and micro-scale whose pores can host cells able to regenerate damaged tissues. In the last decade, a rich literature on electrospun HA-based materials arose. Chemical modifications were generally introduced in HA scaffolds to favour crosslinking or conjugation with bioactive molecules. Considering the high solubility of HA in water, HA-based electrospun scaffolds are cross-linked to increase the stability in biological fluids. Crosslinking is necessary also to avoid the release of HA from the hybrid scaffold when implanted in-vivo. Furthermore, to endow the HA based scaffolds with new chemical or biological properties, conjugation of bioactive molecules to HA was widely reported. Herein, we review the existing research classifying chemical modifications on HA and HA-based electrospun fibers into three categories: i) in-situ crosslinking of electrospun HA-based scaffolds ii) off-site crosslinking of electrospun HA-based scaffolds; iii) conjugation of biofunctional molecules to HA with focus on peptides.

3.
Q Rev Biophys ; 57: e3, 2024 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-38501287

RESUMEN

Elastin function is to endow vertebrate tissues with elasticity so that they can adapt to local mechanical constraints. The hydrophobicity and insolubility of the mature elastin polymer have hampered studies of its molecular organisation and structure-elasticity relationships. Nevertheless, a growing number of studies from a broad range of disciplines have provided invaluable insights, and several structural models of elastin have been proposed. However, many questions remain regarding how the primary sequence of elastin (and the soluble precursor tropoelastin) governs the molecular structure, its organisation into a polymeric network, and the mechanical properties of the resulting material. The elasticity of elastin is known to be largely entropic in origin, a property that is understood to arise from both its disordered molecular structure and its hydrophobic character. Despite a high degree of hydrophobicity, elastin does not form compact, water-excluding domains and remains highly disordered. However, elastin contains both stable and labile secondary structure elements. Current models of elastin structure and function are drawn from data collected on tropoelastin and on elastin-like peptides (ELPs) but at the tissue level, elasticity is only achieved after polymerisation of the mature elastin. In tissues, the reticulation of tropoelastin chains in water defines the polymer elastin that bears elasticity. Similarly, ELPs require polymerisation to become elastic. There is considerable interest in elastin especially in the biomaterials and cosmetic fields where ELPs are widely used. This review aims to provide an up-to-date survey of/perspective on current knowledge about the interplay between elastin structure, solvation, and entropic elasticity.


Asunto(s)
Elastina , Tropoelastina , Tropoelastina/química , Elastina/química , Elasticidad , Estructura Secundaria de Proteína , Péptidos , Agua/química
4.
Chempluschem ; 89(3): e202300662, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38224555

RESUMEN

Thiol-Michael addition is a chemical reaction extensively used for conjugating peptides to polysaccharides with applications as biomaterials. In the present study, for designing a bioactive element in electrospun scaffolds as wound dressing material, a chemical strategy for the semi-synthesis of a hyaluronan-elastin conjugate containing an amide linker (ELAHA) was developed in the presence of tris(2-carboxyethyl)phosphine hydrochloride (TCEP ⋅ HCl). The bioconjugate was electrospun with poly-D,L-lactide (PDLLA), obtaining scaffolds with appealing characteristics in terms of morphology and cell viability of dermal fibroblast cells. For comprehending the factors influencing the efficiency of the bioconjugation reaction, thiolated amino acids were also investigated as nucleophiles toward hyaluronan decorated with Michael acceptors in the presence of TCEP ⋅ HCl through the evaluation of byproducts formation.


Asunto(s)
Ácido Hialurónico , Fosfinas , Elastina/química , Materiales Biocompatibles
5.
Biomimetics (Basel) ; 8(2)2023 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-37218779

RESUMEN

Gelatin sponges are widely employed as hemostatic agents, and are gaining increasing interest as 3D scaffolds for tissue engineering. To broaden their possible application in the field of tissue engineering, a straightforward synthetic protocol able to anchor the disaccharides, maltose and lactose, for specific cell interactions was developed. A high conjugation yield was confirmed by 1H-NMR and FT-IR spectroscopy, and the morphology of the resulting decorated sponges was characterized by SEM. After the crosslinking reaction, the sponges preserve their porous structure as ascertained by SEM. Finally, HepG2 cells cultured on the decorated gelatin sponges show high viability and significant differences in the cellular morphology as a function of the conjugated disaccharide. More spherical morphologies are observed when cultured on maltose-conjugated gelatin sponges, while a more flattened aspect is discerned when cultured onto lactose-conjugated gelatin sponges. Considering the increasing interest in small-sized carbohydrates as signaling cues on biomaterial surfaces, systematic studies on how small carbohydrates might influence cell adhesion and differentiation processes could take advantage of the described protocol.

6.
ACS Appl Polym Mater ; 5(2): 1453-1463, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36817333

RESUMEN

This work concerns the study of electrospun scaffolds as separators for aprotic lithium-ion batteries (LIBs) composed of the amorphous poly-d,l-lactide (PDLLA), in solution concentrations of 8, 10, and 12 wt % and in different ratios with cellulose nanocrystals (CNCs). PDLLA has been studied for the first time as a separator, taking into account its amorphous character that could facilitate electrolyte incorporation into the polymer matrix and influence ionic conductivity, together with CNCs, for reducing the hydrophobicity of the scaffolds. The embedding of the nanocrystals in the scaffolds was confirmed by X-ray diffraction analysis and attenuated total reflectance Fourier transform infrared spectroscopy. The polymer combination influenced the nanofibrous morphology as evaluated by scanning electron microscopy and modulated the electrochemical behavior of the membranes that was investigated through linear sweep voltammetry, cyclic voltammetry, and electrochemical impedance spectroscopy tests. Among the studied categories, the P12 series displayed a nonhomogeneous electrolyte resistance and electrochemical stability, differently from P10, whose results suggested their application in LIBs with standard formulation, as confirmed by a preliminary performance test of the P10N6 formulation in a full Li-ion cell configuration.

7.
Molecules ; 27(22)2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36432002

RESUMEN

Peptide-based hydrogels are of great interest in the biomedical field according to their biocompatibility, simple structure and tunable properties via sequence modification. In recent years, multicomponent assembly of peptides have expanded the possibilities to produce more versatile hydrogels, by blending gelating peptides with different type of peptides to add new features. In the present study, the assembly of gelating P5 peptide SFFSF blended with P21 peptide, SFFSFGVPGVGVPGVGSFFSF, an elastin-inspired peptides or, alternatively, with FF dipeptide, was investigated by oscillatory rheology and different microscopy techniques in order to shed light on the nanotopologies formed by the self-assembled peptide mixtures. Our data show that, depending on the added peptides, cooperative or disruptive assembly can be observed giving rise to distinct nanotopologies to which correspond different mechanical properties that could be exploited to fabricate materials with desired properties.


Asunto(s)
Hidrogeles , Péptidos , Hidrogeles/química , Péptidos/química , Dipéptidos/química , Reología , Inmunidad Celular
8.
Chemistry ; 28(58): e202201959, 2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-35916026

RESUMEN

Hyaluronic acid or hyaluronan (HA) and elastin-inspired peptides (EL) have been widely recognized as bioinspired materials useful in biomedical applications. The aim of the present work is the production of electrospun scaffolds as wound dressing materials which would benefit from synergic action of the bioactivity of elastin peptides and the regenerative properties of hyaluronic acid. Taking advantage of thiol-ene chemistry, a bioactive elastin peptide was successfully conjugated to methacrylated hyaluronic acid (MAHA) and electrospun together with poly-D,L-lactide (PDLLA). To the best of our knowledge, limited reports on peptide-conjugated hyaluronic acid were described in literature, and none of these was employed for the production of electrospun scaffolds. The conformational studies carried out by Circular Dichroism (CD) on the bioconjugated compound confirmed the preservation of secondary structure of the peptide after conjugation while Scanning Electron Microscopy (SEM) revealed the supramolecular structure of the electrospun scaffolds. Overall, the study demonstrates that the bioconjugation of hyaluronic acid with the elastin peptide improved the electrospinning processability with improved characteristics in terms of morphology of the final scaffolds.


Asunto(s)
Ácido Hialurónico , Péptidos , Ácido Hialurónico/química , Microscopía Electrónica de Rastreo , Compuestos de Sulfhidrilo , Ingeniería de Tejidos
9.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34785596

RESUMEN

Roughly 10% of the human population is left-handed, and this rate is increased in some brain-related disorders. The neuroanatomical correlates of hand preference have remained equivocal. We resampled structural brain image data from 28,802 right-handers and 3,062 left-handers (UK Biobank population dataset) to a symmetrical surface template, and mapped asymmetries for each of 8,681 vertices across the cerebral cortex in each individual. Left-handers compared to right-handers showed average differences of surface area asymmetry within the fusiform cortex, the anterior insula, the anterior middle cingulate cortex, and the precentral cortex. Meta-analyzed functional imaging data implicated these regions in executive functions and language. Polygenic disposition to left-handedness was associated with two of these regional asymmetries, and 18 loci previously linked with left-handedness by genome-wide screening showed associations with one or more of these asymmetries. Implicated genes included six encoding microtubule-related proteins: TUBB, TUBA1B, TUBB3, TUBB4A, MAP2, and NME7-mutations in the latter can cause left to right reversal of the visceral organs. There were also two cortical regions where average thickness asymmetry was altered in left-handedness: on the postcentral gyrus and the inferior occipital cortex, functionally annotated with hand sensorimotor and visual roles. These cortical thickness asymmetries were not heritable. Heritable surface area asymmetries of language-related regions may link the etiologies of hand preference and language, whereas nonheritable asymmetries of sensorimotor cortex may manifest as consequences of hand preference.


Asunto(s)
Corteza Cerebral/fisiología , Lateralidad Funcional/genética , Lateralidad Funcional/fisiología , Anciano , Anciano de 80 o más Años , Conducta/fisiología , Bancos de Muestras Biológicas , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Mapeo Encefálico , Corteza Cerebral/diagnóstico por imagen , Femenino , Mano , Humanos , Lenguaje , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Lóbulo Occipital , Corteza Sensoriomotora
10.
ACS Biomater Sci Eng ; 7(11): 5028-5038, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34676744

RESUMEN

Elastin polypeptides based on -VPGVG- repeated motifs are widely used in the production of biomaterials because they are stimuli-responsive systems. On the other hand, glycine-rich sequences, mainly present in tropoelastin terminal domains, are responsible for the elastin self-assembly. In a previous study, we have recombinantly expressed a chimeric polypeptide, named resilin, elastin, and collagen (REC), inspired by glycine-rich motifs of elastin and containing resilin and collagen sequences as well. Herein, a three-block polypeptide, named (REC)3, was expressed starting from the previous monomer gene by introducing key modifications in the sequence. The choice was mandatory because the uneven distribution of the cross-linking sites in the monomer precluded the hydrogel production. In this work, the cross-linked polypeptide appeared as a soft hydrogel, as assessed by rheology, and the linear un-cross-linked trimer self-aggregated more rapidly than the REC monomer. The absence of cell-adhesive sequences did not affect cell viability, while it was functional to the production of a material presenting antiadhesive properties useful in the integration of synthetic devices in the body and preventing the invasion of cells.


Asunto(s)
Elastina , Hidrogeles , Colágeno , Elastina/genética , Péptidos , Tropoelastina/genética
11.
Front Syst Neurosci ; 15: 692152, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34413727

RESUMEN

Human brain white matter undergoes a protracted maturation that continues well into adulthood. Recent advances in diffusion-weighted imaging (DWI) methods allow detailed characterizations of the microstructural architecture of white matter, and they are increasingly utilized to study white matter changes during development and aging. However, relatively little is known about the late maturational changes in the microstructural architecture of white matter during post-adolescence. Here we report on regional changes in white matter volume and microstructure in young adults undergoing university-level education. As part of the MRi-Share multi-modal brain MRI database, multi-shell, high angular resolution DWI data were acquired in a unique sample of 1,713 university students aged 18-26. We assessed the age and sex dependence of diffusion metrics derived from diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) in the white matter regions as defined in the John Hopkins University (JHU) white matter labels atlas. We demonstrate that while regional white matter volume is relatively stable over the age range of our sample, the white matter microstructural properties show clear age-related variations. Globally, it is characterized by a robust increase in neurite density index (NDI), and to a lesser extent, orientation dispersion index (ODI). These changes are accompanied by a decrease in diffusivity. In contrast, there is minimal age-related variation in fractional anisotropy. There are regional variations in these microstructural changes: some tracts, most notably cingulum bundles, show a strong age-related increase in NDI coupled with decreases in radial and mean diffusivity, while others, mainly cortico-spinal projection tracts, primarily show an ODI increase and axial diffusivity decrease. These age-related variations are not different between males and females, but males show higher NDI and ODI and lower diffusivity than females across many tracts. These findings emphasize the complexity of changes in white matter structure occurring in this critical period of late maturation in early adulthood.

12.
Hum Brain Mapp ; 42(16): 5264-5277, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34453474

RESUMEN

The relationship between hippocampal subfield volumetry and verbal list-learning test outcomes have mostly been studied in clinical and elderly populations, and remain controversial. For the first time, we characterized a relationship between verbal list-learning test outcomes and hippocampal subfield volumetry on two large separate datasets of 447 and 1,442 healthy young and middle-aged adults, and explored the processes that could explain this relationship. We observed a replicable positive linear correlation between verbal list-learning test free recall scores and CA1 volume, specific to verbal list learning as demonstrated by the hippocampal subfield volumetry independence from verbal intelligence. Learning meaningless items was also positively correlated with CA1 volume, pointing to the role of the test design rather than word meaning. Accordingly, we found that association-based mnemonics mediated the relationship between verbal list-learning test outcomes and CA1 volume. This mediation suggests that integrating items into associative representations during verbal list-learning tests explains CA1 volume variations: this new explanation is consistent with the associative functions of the human CA1.


Asunto(s)
Hipocampo/anatomía & histología , Aprendizaje Verbal/fisiología , Adolescente , Adulto , Región CA1 Hipocampal/anatomía & histología , Región CA1 Hipocampal/diagnóstico por imagen , Femenino , Hipocampo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Adulto Joven
13.
Brain Struct Funct ; 226(7): 2057-2085, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34283296

RESUMEN

We report on MRi-Share, a multi-modal brain MRI database acquired in a unique sample of 1870 young healthy adults, aged 18-35 years, while undergoing university-level education. MRi-Share contains structural (T1 and FLAIR), diffusion (multispectral), susceptibility-weighted (SWI), and resting-state functional imaging modalities. Here, we described the contents of these different neuroimaging datasets and the processing pipelines used to derive brain phenotypes, as well as how quality control was assessed. In addition, we present preliminary results on associations of some of these brain image-derived phenotypes at the whole brain level with both age and sex, in the subsample of 1722 individuals aged less than 26 years. We demonstrate that the post-adolescence period is characterized by changes in both structural and microstructural brain phenotypes. Grey matter cortical thickness, surface area and volume were found to decrease with age, while white matter volume shows increase. Diffusivity, either radial or axial, was found to robustly decrease with age whereas fractional anisotropy only slightly increased. As for the neurite orientation dispersion and densities, both were found to increase with age. The isotropic volume fraction also showed a slight increase with age. These preliminary findings emphasize the complexity of changes in brain structure and function occurring in this critical period at the interface of late maturation and early ageing.


Asunto(s)
Encéfalo , Universidades , Adolescente , Adulto , Encéfalo/diagnóstico por imagen , Estudios Transversales , Imagen de Difusión Tensora , Humanos , Imagen por Resonancia Magnética , Neuroimagen , Estudiantes , Adulto Joven
14.
Cereb Cortex ; 31(9): 4151-4168, 2021 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-33836062

RESUMEN

The human cerebral hemispheres show a left-right asymmetrical torque pattern, which has been claimed to be absent in chimpanzees. The functional significance and developmental mechanisms are unknown. Here, we carried out the largest-ever analysis of global brain shape asymmetry in magnetic resonance imaging data. Three population datasets were used, UK Biobank (N = 39 678), Human Connectome Project (N = 1113), and BIL&GIN (N = 453). At the population level, there was an anterior and dorsal skew of the right hemisphere, relative to the left. Both skews were associated independently with handedness, and various regional gray and white matter metrics oppositely in the two hemispheres, as well as other variables related to cognitive functions, sociodemographic factors, and physical and mental health. The two skews showed single nucleotide polymorphisms-based heritabilities of 4-13%, but also substantial polygenicity in causal mixture model analysis, and no individually significant loci were found in genome-wide association studies for either skew. There was evidence for a significant genetic correlation between horizontal brain skew and autism, which requires future replication. These results provide the first large-scale description of population-average brain skews and their inter-individual variations, their replicable associations with handedness, and insights into biological and other factors which associate with human brain asymmetry.


Asunto(s)
Encéfalo/fisiología , Lateralidad Funcional/genética , Genómica/métodos , Adulto , Anciano , Anciano de 80 o más Años , Bases de Datos Factuales , Femenino , Lateralidad Funcional/fisiología , Genotipo , Sustancia Gris/diagnóstico por imagen , Estado de Salud , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Factores Sociodemográficos , Sustancia Blanca/diagnóstico por imagen
15.
FEBS J ; 288(13): 4024-4038, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33404190

RESUMEN

Elastin is an extracellular matrix component with key structural and biological roles in elastic tissues. Interactions between resident cells and tropoelastin, the monomer of elastin, underpin elastin's regulation of cellular processes. However, the nature of tropoelastin-cell interactions and the contributions of individual tropoelastin domains to these interactions are only partly elucidated. In this study, we identified and characterized novel cell-adhesive sites in the tropoelastin N-terminal region between domains 12 and 16. We found that this region interacts with αV and α5ß1 integrin receptors, which mediate cell attachment and spreading. A peptide sequence from within this region, spanning domains 14 to mid-domain 16, binds heparan sulfate through electrostatic interactions with peptide lysine residues and induces conformational ordering of the peptide. We propose that domains 14-16 direct initial cell attachment through cell-surface heparan sulfate glycosaminoglycans, followed by αV and α5ß1 integrin-promoted attachment and spreading on domains 12-16 of tropoelastin. These findings advance our mechanistic understanding of elastin matrix biology, with the potential to enhance tissue regenerative outcomes of elastin-based materials.


Asunto(s)
Glicosaminoglicanos/metabolismo , Integrina alfa5beta1/metabolismo , Integrina alfaV/metabolismo , Tropoelastina/metabolismo , Secuencia de Aminoácidos , Sitios de Unión/genética , Adhesión Celular/efectos de los fármacos , Línea Celular , Movimiento Celular/efectos de los fármacos , Dicroismo Circular , Humanos , Péptidos/química , Péptidos/genética , Péptidos/farmacología , Unión Proteica/efectos de los fármacos , Conformación Proteica , Dominios Proteicos , Tropoelastina/química , Tropoelastina/genética
16.
Nucleic Acids Res ; 48(22): 12556-12565, 2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-33270863

RESUMEN

The thrombin binding aptamer (TBA) possesses promising antiproliferative properties. However, its development as an anticancer agent is drastically impaired by its concomitant anticoagulant activity. Therefore, suitable chemical modifications in the TBA sequence would be required in order to preserve its antiproliferative over anticoagulant activity. In this paper, we report structural investigations, based on circular dichroism (CD) and nuclear magnetic resonance spectroscopy (NMR), and biological evaluation of four pairs of enantiomeric heterochiral TBA analogues. The four TBA derivatives of the d-series are composed by d-residues except for one l-thymidine in the small TT loops, while their four enantiomers are composed by l-residues except for one d-thymidine in the same TT loop region. Apart from the left-handedness for the l-series TBA derivatives, CD and NMR measurements have shown that all TBA analogues are able to adopt the antiparallel, monomolecular, 'chair-like' G-quadruplex structure characteristic of the natural D-TBA. However, although all eight TBA derivatives are endowed with remarkable cytotoxic activities against colon and lung cancer cell lines, only TBA derivatives of the l-series show no anticoagulant activity and are considerably resistant in biological environments.


Asunto(s)
Aptámeros de Nucleótidos/genética , G-Cuádruplex , Unión Proteica/genética , Trombina/genética , Anticoagulantes/química , Anticoagulantes/uso terapéutico , Dicroismo Circular , Humanos , Espectroscopía de Resonancia Magnética , Estereoisomerismo , Timidina/genética
17.
Int J Mol Sci ; 21(16)2020 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-32781637

RESUMEN

In this paper, we report studies concerning four variants of the G-quadruplex forming anti-HIV-integrase aptamer T30923, in which specific 2'-deoxyguanosines have been singly replaced by 8-methyl-2'-deoxyguanosine residues, with the aim to exploit the methyl group positioned in the G-quadruplex grooves as a steric probe to investigate the interaction aptamer/target. Although, the various modified aptamers differ in the localization of the methyl group, NMR, circular dichroism (CD), electrophoretic and molecular modeling data suggest that all of them preserve the ability to fold in a stable dimeric parallel G-quadruplex complex resembling that of their natural counterpart T30923. However, the biological data have shown that the T30923 variants are characterized by different efficiencies in inhibiting the HIV-integrase, thus suggesting the involvement of the G-quadruplex grooves in the aptamer/target interaction.


Asunto(s)
Aptámeros de Nucleótidos/farmacología , G-Cuádruplex , Inhibidores de Integrasa VIH/farmacología , Integrasa de VIH/metabolismo , Oligonucleótidos/farmacología , Dicroismo Circular , Dimerización , Humanos , Péptidos y Proteínas de Señalización Intercelular/química , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Temperatura de Transición
18.
J Biomed Mater Res A ; 108(5): 1064-1076, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31967393

RESUMEN

Electrospun scaffolds are emerging as extracellular matrix (ECM)mimicking structures for tissue engineering thanks to their nanofibrous architecture. For the development of suitable electrospun scaffolds for bone tissue engineering, the addition of inorganic components has been implemented with the aim to confer important bioactivity like osteoinduction, osteointegration, and cell adhesion to the scaffolds. In this context, we propose a tricomponent electrospun scaffold composed of poly(d,l-lactide), gelatin and RKKP glass-ceramics. The bioactive RKKP glass-ceramic system has attracted interest, due to the presence of ions such as La3+ and Ta5+ , which turned out to be valuable as growth supporting agents for bones. In this work, RKKP glass-ceramics were embedded inside the microfibers of electrospun scaffolds and the structural and biological properties were investigated. Our results showed that the glass-ceramic microparticles were uniformly distributed in the fibrous structure of the scaffold. Furthermore, the glass-ceramics promoted biomineralization of the scaffolds and improved cell viability and osteogenic differentiation. The mineralized layer formed on RKKP-containing scaffolds after incubation in simulated body fluid medium has been shown to be hydroxyapatite by Raman spectroscopy and X-ray diffraction. The results on differentiation studies of canine adipose-derived mesenchymal stem cells grown on the electrospun scaffolds suggest that on varying the content of RKKP in the scaffold, it is possible to drive the differentiation toward chondrogenic or osteogenic commitment. The presence of ions, like La3+ and Ta5+ , in the RKKP embedded polymeric composite scaffolds could play a role in supporting cell growth and promoting differentiation.


Asunto(s)
Cerámica/química , Gelatina/química , Células Madre Mesenquimatosas/citología , Poliésteres/química , Andamios del Tejido/química , Animales , Células Cultivadas , Perros , Nanofibras/química , Osteogénesis , Ingeniería de Tejidos
19.
Cortex ; 124: 137-153, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31887566

RESUMEN

Previous studies have suggested that altered asymmetry of the planum temporale (PT) is associated with neurodevelopmental disorders, including dyslexia, schizophrenia, and autism. Shared genetic factors have been suggested to link PT asymmetry to these disorders. In a dataset of unrelated subjects from the general population (UK Biobank, N = 18,057), we found that PT volume asymmetry had a significant heritability of roughly 14%. In genome-wide association analysis, two loci were significantly associated with PT asymmetry, including a coding polymorphism within the gene ITIH5 that is predicted to affect the protein's function and to be deleterious (rs41298373, p = 2.01 × 10-15), and a locus that affects the expression of the genes BOK and DTYMK (rs7420166, p = 7.54 × 10-10). DTYMK showed left-right asymmetry of mRNA expression in post mortem PT tissue. Cortex-wide mapping of these SNP effects revealed influences on asymmetry that went somewhat beyond the PT. Using publicly available genome-wide association statistics from large-scale studies, we saw no significant genetic correlations of PT asymmetry with autism spectrum disorder, attention deficit hyperactivity disorder, schizophrenia, educational attainment or intelligence. Of the top two individual loci associated with PT asymmetry, rs41298373 showed a tentative association with intelligence (unadjusted p = .025), while the locus at BOK/DTYMK showed tentative association with educational attainment (unadjusted Ps < .05). These findings provide novel insights into the genetic contributions to human brain asymmetry, but do not support a substantial polygenic association of PT asymmetry with cognitive variation and mental disorders, as far as can be discerned with current sample sizes.


Asunto(s)
Trastorno del Espectro Autista , Estudio de Asociación del Genoma Completo , Nucleósido-Fosfato Quinasa/genética , Proteínas Inhibidoras de Proteinasas Secretoras/genética , Proteínas Proto-Oncogénicas c-bcl-2/genética , Trastorno del Espectro Autista/genética , Lateralidad Funcional , Humanos , Inteligencia/genética , Imagen por Resonancia Magnética , Lóbulo Temporal
20.
Nanomaterials (Basel) ; 9(11)2019 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-31739482

RESUMEN

In the field of tissue engineering, recombinant protein-based biomaterials made up of block polypeptides with tunable properties arising from the functionalities of the individual domains are appealing candidates for the construction of medical devices. In this work, we focused our attention on the preparation and structural characterization of nanofibers from a chimeric-polypeptide-containing resilin and elastin domain, designed on purpose to enhance its cell-binding ability by introducing a specific fibronectin-derived Arg-Gly-Asp (RGD) sequence. The polypeptide ability to self-assemble was investigated. The molecular and supramolecular structure was characterized by Scanning Electronic Microscopy (SEM) and Atomic Force Microscopy (AFM), circular dichroism, state-of-the-art synchrotron radiation-induced techniques X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure spectroscopy (NEXAFS). The attained complementary results allow us to assess as H-bonds influence the morphology of the aggregates obtained after the self-assembling of the chimeric polypeptide. Finally, a preliminary investigation of the potential cytotoxicity of the polypeptide was performed by culturing human fetal foreskin fibroblast (HFFF2) for its use as biomedical device.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...