RESUMEN
Cystic fibrosis (CF) is a congenital disorder resulting in a multisystemic impairment in ion homeostasis. The subsequent alteration of electrochemical gradients severely compromises the function of the airway epithelia. These functional changes are accompanied by recurrent cycles of inflammation-infection that progressively lead to pulmonary insufficiency. Recent developments have pointed to the existence of a gut-lung axis connection, which may modulate the progression of lung disease. Molecular signals governing the interplay between these two organs are therefore candidate molecules requiring further clinical evaluation as potential biomarkers. We demonstrate a temporal association between bile acid (BA) metabolites and inflammatory markers in bronchoalveolar lavage fluid (BALF) from clinically stable children with CF. By modelling the BALF-associated microbial communities, we demonstrate that profiles enriched in operational taxonomic units assigned to supraglottic taxa and opportunistic pathogens are closely associated with inflammatory biomarkers. Applying regression analyses, we also confirmed a linear link between BA concentration and pathogen abundance in BALF. Analysis of the time series data suggests that the continuous detection of BAs in BALF is linked to differential ecological succession trajectories of the lung microbiota. Our data provide further evidence supporting a role for BAs in the early pathogenesis and progression of CF lung disease.
RESUMEN
During the course of growing cell material for the extraction of genomic DNA for the Genomic Encyclopedia of Bacteria and Archaea, strain OC 1/4, the designated type strain of Thermocrinis ruber was cultivated at the Institute for Microbiology and Archaea Center of the University of Regensburg, Regensburg, Germany. Partial sequencing of the 16S rRNA gene indicated that the cell material initially cultivated and the strain held in the DSMZ as DSM 12173 did not correspond with that deposited as AJ005640 and was probably a strain of Thermocrinis albus. A subsequent search of the strain collection of the Institute for Microbiology and Archaea Center of the University of Regensburg held in liquid nitrogen indicated that a strain could be recovered from the liquid nitrogen stocks that corresponded with the properties originally given for strain OC 1/4. We report here on the characterization of this strain that has subsequently been deposited in the DSMZ as DSM 23557.
Asunto(s)
Bacterias/clasificación , Bacterias/genética , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Ácidos Grasos , Hibridación de Ácido Nucleico , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADNRESUMEN
Pseudomonas species are frequent inhabitants of freshwater environments and colonizers of water supply networks via bioadhesion and biofilm formation. P. aeruginosa is the species most commonly associated with human disease, causing a wide variety of infections with links to its presence in freshwater systems. Though several other Pseudomonas species are of ecological and public health importance, little knowledge exists regarding environmental abundances of these species. In the present study, an Illumina-based next-generation sequencing (NGS) approach using Pseudomonas-specific primers targeting the 16S rRNA gene was evaluated and applied to a set of freshwater samples from different environments including a cooling tower sampled monthly during 2 years. Our approach showed high in situ specificity and accuracy. NGS read counts revealed a precise quantification of P. aeruginosa and a good correlation with the absolute number of Pseudomonas genome copies in a validated genus-specific qPCR assay, demonstrating the ability of the NGS approach to determine both relative and absolute abundances of Pseudomonas species and P. aeruginosa. The characterization of Pseudomonas communities in cooling tower water allowed us to identify 43 phylotypes, with P. aeruginosa being the most abundant. A shift existed within each year from a community dominated by phylotypes belonging to P. fluorescens and P. oleovorans phylogenetic groups to a community where P. aeruginosa was highly abundant. Co-occurrence was observed between P. aeruginosa and other phylotypes of P. aeruginosa group as well as the potentially pathogenic species P. stutzeri, but not with phylotypes of the P. fluorescens group, indicating the need to further investigate the metabolic networks and ecological traits of Pseudomonas species. This study demonstrates the potential of deep sequencing as a valuable tool in environmental diagnostics and surveillance of health-related pathogens in freshwater environments.
RESUMEN
BACKGROUND: Statins are a class of therapeutics used to regulate serum cholesterol and reduce the risk of heart disease. Although statins are highly effective in removing cholesterol from the blood, their consumption has been linked to potential adverse effects in some individuals. The most common events associated with statin intolerance are myopathy and increased risk of developing type 2 diabetes mellitus. However, the pathological mechanism through which statins cause these adverse effects is not well understood. RESULTS: Using a murine model, we describe for the first time profound changes in the microbial composition of the gut following statin treatment. This remodelling affected the diversity and metabolic profile of the gut microbiota and was associated with reduced production of butyrate. Statins altered both the size and composition of the bile acid pool in the intestine, tentatively explaining the observed gut dysbiosis. As also observed in patients, statin-treated mice trended towards increased fasting blood glucose levels and weight gain compared to controls. Statin treatment affected the hepatic expression of genes involved in lipid and glucose metabolism. Using gene knockout mice, we demonstrated that the observed effects were mediated through pregnane X receptor (PXR). CONCLUSION: This study demonstrates that statin therapy drives a profound remodelling of the gut microbiota, hepatic gene deregulation and metabolic alterations in mice through a PXR-dependent mechanism. Since the demonstrated importance of the intestinal microbial community in host health, this work provides new perspectives to help prevent the statin-associated unintended metabolic effects.
Asunto(s)
Disbiosis/etiología , Microbioma Gastrointestinal/efectos de los fármacos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/efectos adversos , Intestinos/efectos de los fármacos , Receptores de Esteroides/genética , Animales , Ácidos y Sales Biliares/análisis , Glucemia/análisis , Butiratos/análisis , Diabetes Mellitus Tipo 2/etiología , Disbiosis/fisiopatología , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Intestinos/microbiología , Intestinos/fisiopatología , Metabolismo de los Lípidos/genética , Masculino , Ratones , Ratones Noqueados , Receptor X de Pregnano , Aumento de Peso/efectos de los fármacosRESUMEN
Cooling towers are the major source of outbreaks of legionellosis in Europe and worldwide. These outbreaks are mostly associated with Legionella species, primarily L. pneumophila, and its surveillance in cooling tower environments is of high relevance to public health. In this study, a combined NGS-based approach was used to study the whole bacterial community, specific waterborne and water-based bacterial pathogens, especially Legionella species, targeting the 16S rRNA gene. This approach was applied to water from a cooling tower obtained by monthly sampling during two years. The studied cooling tower was an open circuit cooling tower with lamellar cooling situated in Braunschweig, Germany. A highly diverse bacterial community was observed with 808 genera including 25 potentially pathogenic taxa using universal 16S rRNA primers. Sphingomonas and Legionella were the most abundant pathogenic genera. By applying genus-specific primers for Legionella, a diverse community with 85 phylotypes, and a representative core community with substantial temporal heterogeneity was observed. A high percentage of sequences (65%) could not be affiliated to an acknowledged species. L. pneumophila was part of the core community and the most abundant Legionella species reinforcing the importance of cooling towers as its environmental reservoir. Major temperature shifts (>10 °C) were the key environmental factor triggering the reduction or dominance of the Legionella species in the Legionella community dynamics. In addition, interventions by chlorine dioxide had a strong impact on the Legionella community composition but not on the whole bacterial community. Overall, the presented results demonstrated the value of a combined NGS approach for the molecular monitoring and surveillance of health related pathogens in man-made freshwater systems.
Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Legionella/genética , Microbiología del Agua , Europa (Continente) , Alemania , Dinámica Poblacional , ARN Ribosómico 16S , TemperaturaRESUMEN
SILVA (lat. forest) is a comprehensive web resource, providing services around up to date, high-quality datasets of aligned ribosomal RNA gene (rDNA) sequences from the Bacteria, Archaea, and Eukaryota domains. SILVA dates back to the year 1991 when Dr. Wolfgang Ludwig from the Technical University Munich started the integrated software workbench ARB (lat. tree) to support high-quality phylogenetic inference and taxonomy based on the SSU and LSU rDNA marker genes. At that time, the ARB project maintained both, the sequence reference datasets and the software package for data analysis. In 2005, with the massive increase of DNA sequence data, the maintenance of the software system ARB and the corresponding rRNA databases SILVA was split between Munich and the Microbial Genomics and Bioinformatics Research Group in Bremen. ARB has been continuously developed to include new features and improve the usability of the workbench. Thousands of users worldwide appreciate the seamless integration of common analysis tools under a central graphical user interface, in combination with its versatility. The first SILVA release was deployed in February 2007 based on the EMBL-EBI/ENA release 89. Since then, full SILVA releases offering the database content in various flavours are published at least annually, complemented by intermediate web-releases where only the SILVA web dataset is updated. SILVA is the only rDNA database project worldwide where special emphasis is given to the consistent naming of clades of uncultivated (environmental) sequences, where no validly described cultivated representatives are available. Also exclusive for SILVA is the maintenance of both comprehensive aligned 16S/18S rDNA and 23S/28S rDNA sequence datasets. Furthermore, the SILVA alignments and trees were designed to include Eukaryota, another unique feature among rDNA databases. With the termination of the European Ribosomal RNA Database Project in 2007, the SILVA database has become the authoritative rDNA database project for Europe. The application spectrum of ARB and SILVA ranges from biodiversity analysis, medical diagnostics, to biotechnology and quality control for academia and industry.
Asunto(s)
Biología Computacional , Sistemas de Administración de Bases de Datos , Bases de Datos de Ácidos Nucleicos , Genes de ARNr/genética , Programas Informáticos , Animales , Genes Arqueales/genética , Genes Bacterianos/genética , Alineación de SecuenciaRESUMEN
BACKGROUND: Next Generation Sequencing (NGS) has revolutionized the analysis of natural and man-made microbial communities by using universal primers for bacteria in a PCR based approach targeting the 16S rRNA gene. In our study we narrowed primer specificity to a single, monophyletic genus because for many questions in microbiology only a specific part of the whole microbiome is of interest. We have chosen the genus Legionella, comprising more than 20 pathogenic species, due to its high relevance for water-based respiratory infections. METHODS: A new NGS-based approach was designed by sequencing 16S rRNA gene amplicons specific for the genus Legionella using the Illumina MiSeq technology. This approach was validated and applied to a set of representative freshwater samples. RESULTS: Our results revealed that the generated libraries presented a low average raw error rate per base (<0.5%); and substantiated the use of high-fidelity enzymes, such as KAPA HiFi, for increased sequence accuracy and quality. The approach also showed high in situ specificity (>95%) and very good repeatability. Only in samples in which the gammabacterial clade SAR86 was present more than 1% non-Legionella sequences were observed. Next-generation sequencing read counts did not reveal considerable amplification/sequencing biases and showed a sensitive as well as precise quantification of L. pneumophila along a dilution range using a spiked-in, certified genome standard. The genome standard and a mock community consisting of six different Legionella species demonstrated that the developed NGS approach was quantitative and specific at the level of individual species, including L. pneumophila. The sensitivity of our genus-specific approach was at least one order of magnitude higher compared to the universal NGS approach. Comparison of quantification by real-time PCR showed consistency with the NGS data. Overall, our NGS approach can determine the quantitative abundances of Legionella species, i. e. the complete Legionella microbiome, without the need for species-specific primers. CONCLUSIONS: The developed NGS approach provides a new molecular surveillance tool to monitor all Legionella species in qualitative and quantitative terms if a spiked-in genome standard is used to calibrate the method. Overall, the genus-specific NGS approach opens up a new avenue to massive parallel diagnostics in a quantitative, specific and sensitive way.
Asunto(s)
Agua Dulce/microbiología , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Legionella/genética , Legionella/aislamiento & purificación , Microbiología del Agua , Secuencia de Bases , Cartilla de ADN , ADN Bacteriano/análisis , Genes Bacterianos , Alemania , Legionella pneumophila/genética , Legionella pneumophila/aislamiento & purificación , Reacción en Cadena de la Polimerasa/métodos , ARN Ribosómico 16S/genética , Sensibilidad y Especificidad , Especificidad de la Especie , Abastecimiento de AguaRESUMEN
UNLABELLED: JSpecies Web Server (JSpeciesWS) is a user-friendly online service for in silico calculating the extent of identity between two genomes, a parameter routinely used in the process of polyphasic microbial species circumscription. The service measures the average nucleotide identity (ANI) based on BLAST+ (ANIb) and MUMmer (ANIm), as well as correlation indexes of tetra-nucleotide signatures (Tetra). In addition, it provides a Tetra Correlation Search function, which allows to rapidly compare selected genomes against a continuously updated reference database with currently about 32 000 published whole and draft genome sequences. For comparison, own genomes can be uploaded and references can be selected from the JSpeciesWS reference database. The service indicates whether two genomes share genomic identities above or below the species embracing thresholds, and serves as a fast way to allocate unknown genomes in the frame of the hitherto sequenced species. AVAILABILITY AND IMPLEMENTATION: JSpeciesWS is available at http://jspecies.ribohost.com/jspeciesws SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. CONTACT: mrichter@ribocon.com.
Asunto(s)
Genoma , Células Procariotas , Secuencia de Bases , Computadores , Genómica , InternetRESUMEN
Intense research has been conducted on jellyfish and ctenophores in recent years. They are increasingly recognized as key elements in the marine ecosystem that serve as critical indicators and drivers of ecosystem performance and change. However, the bacterial community associated with ctenophores is still poorly investigated. Based on automated ribosomal intergenic spacer analysis (ARISA) and 16S ribosomal RNA gene amplicon pyrosequencing, we investigated bacterial communities associated with the frequently occurring ctenophore species Mnemiopsis leidyi, Beroe sp., Bolinopsis infundibulum and Pleurobrachia pileus at Helgoland Roads in the German Bight (North Sea). We observed significant differences between the associated bacterial communities of the different ctenophore species based on ARISA patterns. With respect to bacterial taxa, all ctenophore species were dominated by Proteobacteria as revealed by pyrosequencing. Mnemiopsis leidyi and P. pileus mainly harboured Gammaproteobacteria, with Marinomonas as the dominant phylotype of M. leidyi. By contrast, Pseudoalteromonas and Psychrobacter were the most abundant Gammaproteobacteria in P. pileus. Beroe sp. was mainly dominated by Alphaproteobacteria, particularly by the genus Thalassospira. For B. infundibulum, the bacterial community was composed of Alphaproteobacteria and Gammaproteobacteria in equal parts, which consisted of the genera Thalassospira and Marinomonas. In addition, the bacterial communities associated with M. leidyi display a clear variation over time that needs further investigation. Our results indicate that the bacterial communities associated with ctenophores are highly species- specific.
Asunto(s)
Alphaproteobacteria/genética , Ctenóforos/microbiología , Gammaproteobacteria/genética , Consorcios Microbianos/genética , Agua de Mar/microbiología , Animales , Secuencia de Bases , ADN Espaciador Ribosómico/genética , Ecosistema , Mar del Norte , Proteobacteria/genética , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Especificidad de la EspecieRESUMEN
A Gram-negative, oxidase- and catalase-positive bacterium, designated strain EM 4(T), which varied in shape from rod-shaped to curved or helical with frequently observed bulb-shaped protuberances, was isolated from purified water. 16S rRNA gene sequence analysis indicated that the novel strain belongs to the family Chitinophagaceae within the phylum Bacteroidetes; the closest relative among bacterial species with validly published names was determined to be Sediminibacterium salmoneum NBRC 103935(T), with 93.4â% sequence identity. The main fatty acids of strain EM 4(T) were iso-C15â:â0, iso-C15â:â1 and iso-C17â:â0 3-OH. The polar lipid profile consisted of phosphatidylethanolamine, aminolipids, aminophospholipids and unknown lipids; the quinone system consisted of menaquinone MK-7. 16S rRNA gene sequence analysis and the polar lipid and fatty acid profiles suggest that the strain represents a novel genus and species, for which the name Hydrobacter penzbergensis gen. nov., sp. nov. is proposed. The type strain of Hydrobacter penzbergensis is strain EM 4(T) (â=âDSM 25353(T)â=âCCUG 62278(T)).
Asunto(s)
Bacteroidetes/clasificación , Filogenia , Microbiología del Agua , Técnicas de Tipificación Bacteriana , Bacteroidetes/genética , Bacteroidetes/aislamiento & purificación , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Datos de Secuencia Molecular , Fosfatidiletanolaminas/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Vitamina K 2/análogos & derivados , Vitamina K 2/químicaRESUMEN
Sulfide 'chimneys' characteristic of seafloor hydrothermal venting are diverse microbial habitats. ¹³C/¹²C ratios of microbial lipids have rarely been used to assess carbon assimilation pathways on these structures, despite complementing gene- and culture-based approaches. Here, we integrate analyses of the diversity of intact polar lipids (IPL) and their side-chain δ¹³C values (δ¹³ C(lipid)) with 16S rRNA gene-based phylogeny to examine microbial carbon flow on active and inactive sulfide structures from the Manus Basin. Surficial crusts of active structures, dominated by Epsilonproteobacteria, yield bacterial δ¹³C(lipid) values higher than biomass δ¹³C (total organic carbon), implicating autotrophy via the reverse tricarboxylic acid cycle. Our data also suggest δ¹³C(lipid) values vary on individual active structures without accompanying microbial diversity changes. Temperature and/or dissolved substrate effects - likely relating to variable advective-diffusive fluxes to chimney exteriors - may be responsible for differing ¹³C fractionation during assimilation. In an inactive structure, δ¹³C(lipid) values lower than biomass δ¹³C and a distinctive IPL and 16S rRNA gene diversity suggest a shift to a more diverse community and an alternate carbon assimilation pathway after venting ceases. We discuss here the potential of IPL and δ¹³C(lipid) analyses to elucidate carbon flow in hydrothermal structures when combined with other molecular tools.
Asunto(s)
Archaea/metabolismo , Bacterias/metabolismo , Carbono/metabolismo , Respiraderos Hidrotermales/microbiología , Lípidos/análisis , Sulfuros/metabolismo , Archaea/clasificación , Archaea/genética , Archaea/aislamiento & purificación , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Ecosistema , Epsilonproteobacteria/metabolismo , Respiraderos Hidrotermales/química , Filogenia , ARN Ribosómico 16S/genéticaRESUMEN
Biogeochemical and microbiological data indicate that the anaerobic oxidation of non-methane hydrocarbons by sulfate-reducing bacteria (SRB) has an important role in carbon and sulfur cycling at marine seeps. Yet, little is known about the bacterial hydrocarbon degraders active in situ. Here, we provide the link between previous biogeochemical measurements and the cultivation of degraders by direct identification of SRB responsible for butane and dodecane degradation in complex on-site microbiota. Two contrasting seep sediments from Mediterranean Amon mud volcano and Guaymas Basin (Gulf of California) were incubated with (13)C-labeled butane or dodecane under sulfate-reducing conditions and analyzed via complementary stable isotope probing (SIP) techniques. Using DNA- and rRNA-SIP, we identified four specialized clades of alkane oxidizers within Desulfobacteraceae to be distinctively active in oxidation of short- and long-chain alkanes. All clades belong to the Desulfosarcina/Desulfococcus (DSS) clade, substantiating the crucial role of these bacteria in anaerobic hydrocarbon degradation at marine seeps. The identification of key enzymes of anaerobic alkane degradation, subsequent ß-oxidation and the reverse Wood-Ljungdahl pathway for complete substrate oxidation by protein-SIP further corroborated the importance of the DSS clade and indicated that biochemical pathways, analog to those discovered in the laboratory, are of great relevance for natural settings. The high diversity within identified subclades together with their capability to initiate alkane degradation and growth within days to weeks after substrate amendment suggest an overlooked potential of marine benthic microbiota to react to natural changes in seepage, as well as to massive hydrocarbon input, for example, as encountered during anthropogenic oil spills.
Asunto(s)
Alcanos/metabolismo , Deltaproteobacteria/metabolismo , Sedimentos Geológicos/microbiología , Sulfatos/metabolismo , Bacterias/clasificación , Bacterias/aislamiento & purificación , Biodiversidad , Butanos/metabolismo , Deltaproteobacteria/clasificación , Deltaproteobacteria/aislamiento & purificación , Hidrocarburos/metabolismo , Oxidación-Reducción , Filogenia , Agua de Mar , Sulfuros/metabolismoRESUMEN
Hydrothermal sediments in the Guaymas Basin are covered by microbial mats that are dominated by nitrate-respiring and sulphide-oxidizing Beggiatoa. The presence of these mats strongly correlates with sulphide- and ammonium-rich fluids venting from the subsurface. Because ammonium and oxygen form opposed gradients at the sediment surface, we hypothesized that nitrification is an active process in these Beggiatoa mats. Using biogeochemical and molecular methods, we measured nitrification and determined the diversity and abundance of nitrifiers. Nitrification rates ranged from 74 to 605 µmol N l(-1) mat day(-1), which exceeded those previously measured in hydrothermal plumes and other deep-sea habitats. Diversity and abundance analyses of archaeal and bacterial ammonia monooxygenase subunit A genes, archaeal 16S ribosomal RNA pyrotags and fluorescence in situ hybridization confirmed that ammonia- and nitrite-oxidizing microorganisms were associated with Beggiatoa mats. Intriguingly, we observed cells of bacterial and potential thaumarchaeotal ammonia oxidizers attached to narrow, Beggiatoa-like filaments. Such a close spatial coupling of nitrification and nitrate respiration in mats of large sulphur bacteria is novel and may facilitate mat-internal cycling of nitrogen, thereby reducing loss of bioavailable nitrogen in deep-sea sediments.
Asunto(s)
Archaea/genética , Beggiatoa/fisiología , Biopelículas , Sedimentos Geológicos/microbiología , Nitrificación , Compuestos de Amonio/química , Archaea/enzimología , Proteínas Arqueales/genética , Océano Atlántico , Bacterias/genética , Proteínas Bacterianas/genética , Dosificación de Gen , Genes Arqueales , Genes Bacterianos , Variación Genética , Sedimentos Geológicos/química , Respiraderos Hidrotermales/microbiología , Fenómenos Microbiológicos , Datos de Secuencia Molecular , Nitratos/química , Óxido Nítrico/química , Oxidación-Reducción , Oxidorreductasas/genética , Oxígeno/química , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADNRESUMEN
SILVA (from Latin silva, forest, http://www.arb-silva.de) is a comprehensive resource for up-to-date quality-controlled databases of aligned ribosomal RNA (rRNA) gene sequences from the Bacteria, Archaea and Eukaryota domains and supplementary online services. SILVA provides a manually curated taxonomy for all three domains of life, based on representative phylogenetic trees for the small- and large-subunit rRNA genes. This article describes the improvements the SILVA taxonomy has undergone in the last 3 years. Specifically we are focusing on the curation process, the various resources used for curation and the comparison of the SILVA taxonomy with Greengenes and RDP-II taxonomies. Our comparisons not only revealed a reasonable overlap between the taxa names, but also points to significant differences in both names and numbers of taxa between the three resources.
Asunto(s)
Archaea/clasificación , Bacterias/clasificación , Bases de Datos de Ácidos Nucleicos , Eucariontes/clasificación , Genes de ARNr , Eucariontes/genética , Genes Arqueales , Genes Bacterianos , Internet , ARN Ribosómico 16S/genética , ARN Ribosómico 23S/genética , Alineación de Secuencia , Programas Informáticos , Terminología como AsuntoRESUMEN
16S ribosomal RNA gene (rDNA) amplicon analysis remains the standard approach for the cultivation-independent investigation of microbial diversity. The accuracy of these analyses depends strongly on the choice of primers. The overall coverage and phylum spectrum of 175 primers and 512 primer pairs were evaluated in silico with respect to the SILVA 16S/18S rDNA non-redundant reference dataset (SSURef 108 NR). Based on this evaluation a selection of 'best available' primer pairs for Bacteria and Archaea for three amplicon size classes (100-400, 400-1000, ≥ 1000 bp) is provided. The most promising bacterial primer pair (S-D-Bact-0341-b-S-17/S-D-Bact-0785-a-A-21), with an amplicon size of 464 bp, was experimentally evaluated by comparing the taxonomic distribution of the 16S rDNA amplicons with 16S rDNA fragments from directly sequenced metagenomes. The results of this study may be used as a guideline for selecting primer pairs with the best overall coverage and phylum spectrum for specific applications, therefore reducing the bias in PCR-based microbial diversity studies.
Asunto(s)
Archaea/genética , Bacterias/genética , Cartilla de ADN , Secuenciación de Nucleótidos de Alto Rendimiento , Reacción en Cadena de la Polimerasa , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Biodiversidad , Simulación por Computador , Genes de ARNr , Variación Genética , MetagenomaRESUMEN
SILVA (from Latin silva, forest, http://www.arb-silva.de) is a comprehensive web resource for up to date, quality-controlled databases of aligned ribosomal RNA (rRNA) gene sequences from the Bacteria, Archaea and Eukaryota domains and supplementary online services. The referred database release 111 (July 2012) contains 3 194 778 small subunit and 288 717 large subunit rRNA gene sequences. Since the initial description of the project, substantial new features have been introduced, including advanced quality control procedures, an improved rRNA gene aligner, online tools for probe and primer evaluation and optimized browsing, searching and downloading on the website. Furthermore, the extensively curated SILVA taxonomy and the new non-redundant SILVA datasets provide an ideal reference for high-throughput classification of data from next-generation sequencing approaches.
Asunto(s)
Bases de Datos de Ácidos Nucleicos , Genes de ARNr , Archaea/clasificación , Archaea/genética , Bacterias/clasificación , Bacterias/genética , Eucariontes/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Internet , Programas InformáticosRESUMEN
Recent studies have indicated the existence of an extensive trans-genomic trans-mural co-metabolism between gut microbes and animal hosts that is diet-, host phylogeny- and provenance-influenced. Here, we analyzed the biodiversity at the level of small subunit rRNA gene sequence and the metabolic composition of 18 Mbp of consensus metagenome sequences and activity characteristics of bacterial intra-cellular extracts, in wild Iberian lynx (Lynx pardinus) fecal samples. Bacterial signatures (14.43% of all of the Firmicutes reads and 6.36% of total reads) related to the uncultured anaerobic commensals Anaeroplasma spp., which are typically found in ovine and bovine rumen, were first identified. The lynx gut was further characterized by an over-representation of 'presumptive' aquaporin aqpZ genes and genes encoding 'active' lysosomal-like digestive enzymes that are possibly needed to acquire glycerol, sugars and amino acids from glycoproteins, glyco(amino)lipids, glyco(amino)glycans and nucleoside diphosphate sugars. Lynx gut was highly enriched (28% of the total glycosidases) in genes encoding α-amylase and related enzymes, although it exhibited low rate of enzymatic activity indicative of starch degradation. The preponderance of ß-xylosidase activity in protein extracts further suggests lynx gut microbes being most active for the metabolism of ß-xylose containing plant N-glycans, although ß-xylosidases sequences constituted only 1.5% of total glycosidases. These collective and unique bacterial, genetic and enzymatic activity signatures suggest that the wild lynx gut microbiota not only harbors gene sets underpinning sugar uptake from primary animal tissues (with the monotypic dietary profile of the wild lynx consisting of 80-100% wild rabbits) but also for the hydrolysis of prey-derived plant biomass. Although, the present investigation corresponds to a single sample and some of the statements should be considered qualitative, the data most likely suggests a tighter, more coordinated and complex evolutionary and nutritional ecology scenario of carnivore gut microbial communities than has been previously assumed.
Asunto(s)
Especies en Peligro de Extinción , Conducta Alimentaria/fisiología , Tracto Gastrointestinal/microbiología , Genes Bacterianos/genética , Lynx/microbiología , Animales , Animales Salvajes , Bacterias/genética , Variación Genética , EspañaRESUMEN
Due to its extreme salinity and high Mg concentration the Dead Sea is characterized by a very low density of cells most of which are Archaea. We discovered several underwater fresh to brackish water springs in the Dead Sea harboring dense microbial communities. We provide the first characterization of these communities, discuss their possible origin, hydrochemical environment, energetic resources and the putative biogeochemical pathways they are mediating. Pyrosequencing of the 16S rRNA gene and community fingerprinting methods showed that the spring community originates from the Dead Sea sediments and not from the aquifer. Furthermore, it suggested that there is a dense Archaeal community in the shoreline pore water of the lake. Sequences of bacterial sulfate reducers, nitrifiers iron oxidizers and iron reducers were identified as well. Analysis of white and green biofilms suggested that sulfide oxidation through chemolitotrophy and phototrophy is highly significant. Hyperspectral analysis showed a tight association between abundant green sulfur bacteria and cyanobacteria in the green biofilms. Together, our findings show that the Dead Sea floor harbors diverse microbial communities, part of which is not known from other hypersaline environments. Analysis of the water's chemistry shows evidence of microbial activity along the path and suggests that the springs supply nitrogen, phosphorus and organic matter to the microbial communities in the Dead Sea. The underwater springs are a newly recognized water source for the Dead Sea. Their input of microorganisms and nutrients needs to be considered in the assessment of possible impact of dilution events of the lake surface waters, such as those that will occur in the future due to the intended establishment of the Red Sea-Dead Sea water conduit.
Asunto(s)
Agua Dulce/microbiología , Agua de Mar/microbiología , Archaea/genética , Archaea/aislamiento & purificación , Biopelículas/crecimiento & desarrollo , Chlorobi/genética , Chlorobi/aislamiento & purificación , Cianobacterias/genética , Cianobacterias/aislamiento & purificación , ARN Ribosómico 16S/genética , Microbiología del AguaRESUMEN
Phytoplankton blooms characterize temperate ocean margin zones in spring. We investigated the bacterioplankton response to a diatom bloom in the North Sea and observed a dynamic succession of populations at genus-level resolution. Taxonomically distinct expressions of carbohydrate-active enzymes (transporters; in particular, TonB-dependent transporters) and phosphate acquisition strategies were found, indicating that distinct populations of Bacteroidetes, Gammaproteobacteria, and Alphaproteobacteria are specialized for successive decomposition of algal-derived organic matter. Our results suggest that algal substrate availability provided a series of ecological niches in which specialized populations could bloom. This reveals how planktonic species, despite their seemingly homogeneous habitat, can evade extinction by direct competition.
Asunto(s)
Alphaproteobacteria/crecimiento & desarrollo , Bacteroidetes/crecimiento & desarrollo , Diatomeas/crecimiento & desarrollo , Ecosistema , Eutrofización , Gammaproteobacteria/crecimiento & desarrollo , Fitoplancton/crecimiento & desarrollo , Agua de Mar/microbiología , Alphaproteobacteria/enzimología , Alphaproteobacteria/genética , Alphaproteobacteria/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacteroidetes/enzimología , Bacteroidetes/genética , Bacteroidetes/metabolismo , Diatomeas/metabolismo , Gammaproteobacteria/enzimología , Gammaproteobacteria/genética , Gammaproteobacteria/metabolismo , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Metagenoma , Interacciones Microbianas , Mar del Norte , Fosfatos/metabolismo , Fitoplancton/metabolismo , Sulfatasas/genética , Sulfatasas/metabolismoRESUMEN
MOTIVATION: In the analysis of homologous sequences, computation of multiple sequence alignments (MSAs) has become a bottleneck. This is especially troublesome for marker genes like the ribosomal RNA (rRNA) where already millions of sequences are publicly available and individual studies can easily produce hundreds of thousands of new sequences. Methods have been developed to cope with such numbers, but further improvements are needed to meet accuracy requirements. RESULTS: In this study, we present the SILVA Incremental Aligner (SINA) used to align the rRNA gene databases provided by the SILVA ribosomal RNA project. SINA uses a combination of k-mer searching and partial order alignment (POA) to maintain very high alignment accuracy while satisfying high throughput performance demands. SINA was evaluated in comparison with the commonly used high throughput MSA programs PyNAST and mothur. The three BRAliBase III benchmark MSAs could be reproduced with 99.3, 97.6 and 96.1 accuracy. A larger benchmark MSA comprising 38 772 sequences could be reproduced with 98.9 and 99.3% accuracy using reference MSAs comprising 1000 and 5000 sequences. SINA was able to achieve higher accuracy than PyNAST and mothur in all performed benchmarks. AVAILABILITY: Alignment of up to 500 sequences using the latest SILVA SSU/LSU Ref datasets as reference MSA is offered at http://www.arb-silva.de/aligner. This page also links to Linux binaries, user manual and tutorial. SINA is made available under a personal use license.