Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 224
Filtrar
1.
J Appl Polym Sci ; 141(9)2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38962028

RESUMEN

In this study, we use modified cationic nanocarriers as vehicles for the intracellular delivery of therapeutic siRNA. After developing nanocarrier formulations with appropriate pKa, size, swellability, and cytocompatibility, we investigated the importance of siRNA loading methods by studying the impact of the pH and time over which siRNA is loaded into the nanocarriers. We concentrate on diffusion-based loading in the presence and absence of electrostatic interactions. siRNA release kinetics were studied using samples prepared from nanocarriers loaded by both mechanisms. In addition, siRNA delivery was evaluated for two formulations. While previous studies were conducted with samples prepared by siRNA loading at low pH values, this research provides evidence that loading conditions of siRNA affect the release behavior. This study concludes that this concept could prove advantageous for eliciting prolonged intracellular release of nucleic acids and negatively charged molecules, effectively decreasing dose frequency and contributing to more effective therapies and improved patient outcomes. In addition, our findings could be leveraged for enhanced control over siRNA release kinetics, providing novel methods for the continued optimization of cationic nanoparticles in a wide array of RNA interference-based applications.

2.
Acta Biomater ; 183: 61-73, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38838911

RESUMEN

Achieving precise spatiotemporal control over the release of proangiogenic factors is crucial for vasculogenesis, the process of de novo blood vessel formation. Although various strategies have been explored, there is still a need to develop cell-laden biomaterials with finely controlled release of proangiogenic factors at specific locations and time points. We report on the developed of a near-infrared (NIR) light-responsive collagen hydrogel comprised of gold nanorods (GNRs)-conjugated liposomes containing proangiogenic growth factors (GFs). We demonstrated that this system enables on-demand dual delivery of GFs at specific sites and over selected time intervals. Liposomes were strategically formulated to encapsulate either platelet-derived growth factor (PDGF) or vascular endothelial growth factor (VEGF), each conjugated to gold nanorods (GNRs) with distinct geometries and surface plasmon resonances at 710 nm (GNR710) and 1064 nm (GNR1064), respectively. Using near infrared (NIR) irradiation and two-photon (2P) luminescence imaging, we successfully demonstrated the independent release of PDGF from GNR710 conjugated liposomes and VEGF from GNR1064-conjugated liposomes. Our imaging data revealed rapid release kinetics, with localized PDGF released in approximately 4 min and VEGF in just 1 and a half minutes following NIR laser irradiation. Importantly, we demonstrated that the release of each GF could be independently triggered using NIR irradiation with the other GF formulation remaining retained within the liposomes. This light-responsive collagen hydrogels holds promise for various applications in regenerative medicine where the establishment of a guided vascular network is essential for the survival and integration of engineered tissues. STATEMENT OF SIGNIFICANCE: In this study, we have developed a light-responsive system with gold nanorods (GNRs)-conjugated liposomes in a collagen hydrogel, enabling precise dual delivery of proangiogenic growth factors (GFs) at specific locations and timepoints. Liposomes, containing platelet-derived growth factor (PDGF) or vascular endothelial growth factor (VEGF), release independently under near- infrared irradiation. This approach allows external activation of desired GF release, ensuring high cell viability. Each GF can be triggered independently, retaining the other within the liposomes. Beyond its application in establishing functional vascular networks, this dual delivery system holds promise as a universal platform for delivering various combinations of two or more GFs.


Asunto(s)
Oro , Hidrogeles , Rayos Infrarrojos , Liposomas , Nanotubos , Factor A de Crecimiento Endotelial Vascular , Hidrogeles/química , Factor A de Crecimiento Endotelial Vascular/farmacología , Oro/química , Liposomas/química , Nanotubos/química , Humanos , Factor de Crecimiento Derivado de Plaquetas/farmacología , Animales , Ratones
3.
Sci Adv ; 10(25): eadn8079, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38905336

RESUMEN

Autophagy-targeting chimera (AUTAC) has emerged as a powerful modality that can selectively degrade tumor-related pathogenic proteins, but its low bioavailability and nonspecific distribution significantly restrict their therapeutic efficacy. Inspired by the guanine structure of AUTAC molecules, we here report supramolecular artificial Nano-AUTACs (GM NPs) engineered by AUTAC molecule GN [an indoleamine 2,3-dioxygenase (IDO) degrader] and nucleoside analog methotrexate (MTX) through supramolecular interactions for tumor-specific protein degradation. Their nanostructures allow for precise localization and delivery into cancer cells, where the intracellular acidic environment can disrupt the supramolecular interactions to release MTX for eradicating tumor cells, modulating tumor-associated macrophages, activating dendritic cells, and inducing autophagy. Specifically, the induced autophagy facilitates the released GN for degrading immunosuppressive IDO to further enhance effector T cell activity and inhibit tumor growth and metastasis. This study offers a unique strategy for building a nanoplatform to advance the field of AUTAC in tumor immunotherapy.


Asunto(s)
Autofagia , Inmunoterapia , Inmunoterapia/métodos , Animales , Ratones , Humanos , Autofagia/efectos de los fármacos , Línea Celular Tumoral , Proteolisis , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Nanopartículas/química , Metotrexato/farmacología , Metotrexato/química , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Células Dendríticas/metabolismo , Células Dendríticas/inmunología
5.
Adv Drug Deliv Rev ; 208: 115300, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38548104

RESUMEN

Rheumatoid arthritis (RA) is an autoimmune disease suffered by millions of people worldwide. It can significantly affect the patient's quality of life by damaging not only the joints but also organs such as the lungs and the heart. RA is normally treated using nonsteroidal anti-inflammatory drugs (NSAIDs), glucocorticoids, disease-modifying antirheumatic drugs (DMARDs), and biologics. These active agents often cause side effects and offer low efficacy due to their lack of specificity and limited retention time. In an attempt to improve RA treatments, hydrogel-based systems have been proposed as drug delivery carriers. Due to their exceptional adaptability and biocompatibility, hydrogels have the potential of enhancing the delivery of RA therapy through different administration routes in an efficient and effective manner. In this review, we explore the application of hydrogel systems as potential carriers in RA treatment. Additionally, we discuss recent work in the field and highlight the required hydrogel properties, depending on the administration route. The outstanding potential of hydrogel systems as carriers for RA was demonstrated; however, there is extensive research yet to be done to improve available treatments for RA.


Asunto(s)
Antirreumáticos , Artritis Reumatoide , Humanos , Hidrogeles , Calidad de Vida , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/inducido químicamente , Antirreumáticos/uso terapéutico , Antirreumáticos/efectos adversos , Antiinflamatorios no Esteroideos , Portadores de Fármacos/uso terapéutico
6.
Biomater Sci ; 12(7): 1707-1715, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38334980

RESUMEN

Polymeric nanomaterials have seen widespread use in biomedical applications as they are highly tuneable to achieve the desired stimuli-responsiveness, targeting, biocompatibility, and degradation needed for fields such as drug delivery and biosensing. However, adjustments to composition and the introduction of new monomers often necessitate reoptimization of the polymer synthesis to achieve the target parameters. In this study, we explored the use of inverse emulsion polymerization to prepare a library of polymeric nanoparticles with variations in pH and temperature response and examined the impact of overall batch volume and the volume of the aqueous phase on nanoparticle size and composition. We were able to prepare copolymeric nanoparticles using three different nonionic and three different anionic comonomers. Varying the non-ionizable comonomers, acrylamide (AAm), 2-hydroxyethyl methacrylate, and N-isopropylacrylamide (NIPAM), was found to alter the mass percentage of methacrylic acid (MAA) incorporated (from 26.7 ± 3.5 to 45.8 ± 1.8 mass%), the critical swelling pH (from 5.687 ± 0.194 to 6.637 ± 0.318), and the volume swelling ratio (from 1.389 ± 0.064 to 2.148 ± 0.037). Additionally, the use of NIPAM was found to allow for temperature-responsive behavior. Varying the ionizable comonomers, MAA, itaconic acid, and 2-acrylamido-2-methylpropane sulfonic acid (AMPSA), was found to significantly alter the critical swelling pH and, in the case of AMPSA, remove the pH-responsive behavior entirely. Finally, we found that for the base P(AAm-co-MAA) formulation, the pH-responsive swelling behavior was independent of the scale of the reaction; however, variations in the aqueous volume relative to the volume of the continuous phase significantly affected both the nanoparticle size and the critical swelling pH.


Asunto(s)
Portadores de Fármacos , Metacrilatos , Nanopartículas , Emulsiones/química , Polimerizacion , Portadores de Fármacos/química , Concentración de Iones de Hidrógeno , Nanopartículas/química , Polímeros/química
7.
Drug Deliv Transl Res ; 14(1): 30-61, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37587290

RESUMEN

Despite the fact that numerous immunotherapy-based drugs have been approved by the FDA for the treatment of primary and metastatic tumors, only a small proportion of the population can benefit from them because of primary and acquired resistances. Moreover, the translation of immunotherapy from the bench to the clinical practice is being challenging because of the short half-lives of the involved molecules, the difficulties to accomplish their delivery to the target sites, and some serious adverse effects that are being associated with these approaches. The emergence of drug delivery vehicles in the field of immunotherapy is helping to overcome these difficulties and limitations and this review describes how, providing some illustrative examples. Moreover, this article provides an exhaustive review of the studies that have been published to date on the particular case of hematological cancers. (Created with BioRender).


Asunto(s)
Sistemas de Liberación de Medicamentos , Neoplasias , Humanos , Preparaciones Farmacéuticas , Sistemas de Liberación de Medicamentos/métodos , Inmunoterapia/métodos , Neoplasias/tratamiento farmacológico , Neoplasias/patología
8.
Drug Deliv Transl Res ; 14(5): 1173-1188, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38151650

RESUMEN

Conventional therapeutic approaches for cancer generally involve chemo- and radiation therapies that often exhibit low efficacy and induce toxic side effects. Recent years have seen significant advancements in the use of protein biologics as a promising alternative treatment option. Nanotechnology-based systems have shown great potential in providing more specific and targeted cancer treatments, thus improving upon many of the limitations associated with current treatments. The unique properties of biomaterial carriers at the nanoscale have been proven to enhance both the performance of the incorporated therapeutic agent and tumor targeting; however, many of these systems are delivered intravenously, which can cause hazardous side effects. Buccal and sublingual delivery systems offer an alternative route for more efficient delivery of nanotechnologies and drug absorption into systemic circulation. This review concentrates on emerging buccal and sublingual nanoparticle delivery systems for chemo- and protein therapeutics, their development, efficacy, and potential areas of improvement in the field. Several factors contribute to the development of effective buccal or sublingual nanoparticle delivery systems, including targeting efficiency of the nanoparticulate carriers, drug release, and carrier biocompatibility. Furthermore, the potential utilization of buccal and sublingual multilayer films combined with nanoparticle chemotherapeutic systems is outlined as a future avenue for in vitro and in vivo research.


Asunto(s)
Sistemas de Liberación de Medicamentos , Nanopartículas , Administración Bucal , Liberación de Fármacos
9.
J Control Release ; 364: 216-226, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37890591

RESUMEN

While a number of enteric coatings and pH-sensitive oral delivery vehicles have been developed, they lack the ability to sufficiently protect proteins from proteolytic degradation once released from the carrier. In this work, we show that H-bonded, pH-sensitive poly(methacrylic acid-grafted ethylene glycol) glycol (henceforth designated as P(MAA-g-EG) gels) exhibit great promise as protein carriers, as they utilize poly(ethylene glycol) (PEG) chains to promote mucoadhesion in the small intestine, increasing the chances that the drug is released within the villus of the absorptive intestinal wall. Importantly, PEG was also conjugated to the B29-lysine (LysB29) position of insulin in order to protect the drug from proteolytic degradation once released in the small intestine and adhere the drug to the intestinal epithelium through improved mucoadhesion. PEG-conjugated (PEGylated) molecules were found to actively participate in the carrier loading and release mechanism, with the drug conjugate hydrogen bonding to the MAA while in the collapsed state and subsequently repulse the drug above the polymer's isoelectric point. This effect was enhanced through the evaluation of PEG graft density within the carrier. Cellular transport and changes in transepithelial resistance caused by the PEGylated insulin (PI) in the presence of P(MAA-g-EG) microparticles were analyzed using a 1:1 co-culture of human colon adenocarcinoma (Caco-2) and: the mucus-secreting human colon carcinoma cell(HT-29-MTX). Finally, the in vivo absorption of insulin was measured in Sprague-Dawley rats to ensure that the PEGylated insulin conjugates are biologically active, as well as to compare the bioavailability to control insulin. Collectively, these results lead toward the development of a novel system for improved insulin delivery, with improved stability of insulin through PEGylation.


Asunto(s)
Adenocarcinoma , Neoplasias del Colon , Ratas , Animales , Humanos , Hidrogeles , Células CACO-2 , Ratas Sprague-Dawley , Insulina , Polietilenglicoles , Proteínas , Administración Oral , Portadores de Fármacos
10.
Nano Lett ; 23(20): 9310-9318, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37843021

RESUMEN

Nonviral gene delivery has emerged as a promising technology for gene therapy. Nonetheless, these approaches often face challenges, primarily associated with lower efficiency, which can be attributed to the inefficient transportation of DNA into the nucleus. Here, we report a two-stage condensation approach to achieve efficient nuclear transport of DNA. First, we utilize chemical linkers to cross-link DNA plasmids via a reversible covalent bond to form smaller-sized bundled DNA (b-DNA). Then, we package the b-DNA into cationic vectors to further condense b-DNA and enable efficient gene delivery to the nucleus. We demonstrate clear improvements in the gene transfection efficiency in vitro, including with 11.6 kbp plasmids and in primary cultured neurons. Moreover, we also observed a remarkable improvement in lung-selective gene transfection efficiency in vivo by this two-stage condensation approach following intravenous administration. This reversible covalent assembly strategy demonstrates substantial value of nonviral gene delivery for clinical therapeutic applications.


Asunto(s)
ADN Forma B , Transfección , Técnicas de Transferencia de Gen , Plásmidos/genética , ADN/genética , Terapia Genética
11.
J Mater Chem B ; 11(36): 8689-8696, 2023 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-37641956

RESUMEN

Controlled and sustained delivery of therapeutic proteins is crucial for achieving desired effects in wound healing applications. Yet, this remains a challenge in growth factor delivery for bone tissue engineering. Current delivery systems can lead to negative side effects, such as ectopic bone growth and cancer, due to the over administration of growth inducing proteins. Here, we have developed a two-phase system for the controlled release of therapeutic proteins. The system consists of protein-loaded poly(methacrylic acid)-based nanoparticles conjugated to chitosan scaffolds. The effect of co-monomer hydrophilicity and crosslinking density on nanoparticle properties was evaluated. It was found that the release kinetics of model therapeutic proteins were dependent on nanoparticle hydrophilicity. The chitosan scaffold, chosen for its biocompatibility and osteogenic properties, provided additional barriers to diffusion and promoted nanoparticle retention, leading to more sustained protein delivery. Additionally, the ability of MC3T3-E1 pre-osteoblast cells to proliferate on scaffolds with and without conjugated nanoparticles was evaluated and all scaffolds were shown to promote cell growth. The results demonstrate that the two-phase scaffold system presents a superior strategy for the sustained and controlled release of therapeutic proteins for bone tissue engineering applications.


Asunto(s)
Quitosano , Preparaciones de Acción Retardada , Desarrollo Óseo , Huesos , Ciclo Celular
12.
Biomaterials ; 301: 122272, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37573839

RESUMEN

Synthetic hydrogels are widely used as artificial 3D environments for cell culture, facilitating the controlled study of cell-environment interactions. However, most hydrogels are limited in their ability to represent the physical properties of biological tissues because stiffness and solute transport properties in hydrogels are closely correlated. Resultingly, experimental investigations of cell-environment interactions in hydrogels are confounded by simultaneous changes in multiple physical properties. Here, we overcame this limitation by simultaneously manipulating four structural parameters to synthesize a library of multi-arm poly (ethylene glycol) (PEG) hydrogel formulations with robustly decoupled stiffness and solute transport. This structural design approach avoids chemical alterations or additions to the network that might have unanticipated effects on encapsulated cells. An algorithm created to statistically evaluate stiffness-transport decoupling within the dataset identified 46 of the 73 synthesized formulations as robustly decoupled. We show that the swollen polymer network model accurately predicts 11 out of 12 structure-property relationships, suggesting that this approach to decoupling stiffness and solute transport in hydrogels is fundamentally validated and potentially broadly applicable. Furthermore, the unprecedented control of hydrogel network structure provided by multi-arm PEG hydrogels confirmed several fundamental modeling assumptions. This study enables nuanced hydrogel design for uncompromised investigation of cell-environment interactions.


Asunto(s)
Materiales Biocompatibles , Polietilenglicoles , Materiales Biocompatibles/química , Polietilenglicoles/química , Hidrogeles/química
13.
J Control Release ; 361: 246-259, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37524149

RESUMEN

Currently, commercially available antibody therapies must be delivered via parenteral administration. Oral delivery of antibodies could increase patient compliance and improve quality of life, however there is currently no viable system for delivering antibodies orally. In this work, a self-assembled, pH-responsive nanoparticle delivery system was developed to load and deliver antibodies via the oral route. The nanoparticles were synthesized via nanoprecipitation using the pH-responsive copolymers based on poly(methacrylic acid-co-methyl methacrylate)-block-poly(ethylene glycol). The reversibly hydrophobic nature of this polymer allowed it to function as an antibody delivery system via self-assembly. Characteristics of the polymer, including monomer ratios and molecular weight, as well as parameters of the nanoprecipitation process were optimized using Design of Experiments to achieve nanoparticles with desired size, polydispersity, loading efficiency, and release characteristics. Ultimately, the synthesized and optimized nanoparticles exhibited a hydrodynamic size within a range that avoids premature clearance, a low polydispersity index, and high IgG loading efficiency. In in vitro antibody release studies at physiologically relevant pH values, the nanoparticles exhibit promising release profiles. The nanoparticles presented in this work show potential as oral delivery vehicles for therapeutic antibodies.


Asunto(s)
Nanopartículas , Polímeros , Humanos , Polímeros/química , Calidad de Vida , Polietilenglicoles/química , Micelas , Nanopartículas/química , Concentración de Iones de Hidrógeno , Sistemas de Liberación de Medicamentos , Portadores de Fármacos/química
14.
Adv Drug Deliv Rev ; 199: 114970, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37385543

RESUMEN

Ribonucleic acid (RNA) is of great interest in many different therapeutic areas including infectious diseases such as immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS). Thanks to current, advanced treatments for HIV, the diagnosis is no longer a death sentence. However, even with these treatments, latency is suggested to persist in T-lymphocyte-rich tissues including gut-associated lymphatic tissue (GALT), spleen, and bone marrow making HIV an incurable disease. Therefore, it is important to design systems that can effectively deliver therapeutics to these tissues to fight latent infection and find a functional cure. Numerous therapeutics ranging from small molecules to cell therapies have been explored as a cure for HIV but have failed to maintain therapeutic longevity. RNA interference (RNAi) provides a unique opportunity to achieve a functional cure for those who suffer from chronic HIV/AIDS by suppressing replication of the virus. However, RNA has certain imitations in delivery as it cannot be delivered without a carrier due to its negative charge and degradation from endogenous nucleases. Here, we provide a detailed analysis of explored systems for siRNA delivery for HIV/AIDS in the context of RNA therapeutic design and nanoparticle design. In addition, we suggest strategies that should be used to target specific tissues that are rich in lymphatic tissue.


Asunto(s)
Síndrome de Inmunodeficiencia Adquirida , Infecciones por VIH , Humanos , Síndrome de Inmunodeficiencia Adquirida/tratamiento farmacológico , Síndrome de Inmunodeficiencia Adquirida/genética , Interferencia de ARN , ARN Interferente Pequeño/uso terapéutico , ARN Interferente Pequeño/genética , Médula Ósea , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/genética
15.
Biomaterials ; 300: 122191, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37295223

RESUMEN

Protein therapeutics have guided a transformation in disease treatment for various clinical conditions. They have been successful in numerous applications, but administration of protein therapeutics has been limited to parenteral routes which can decrease patient compliance as they are invasive and painful. In recent years, the synergistic relationship of novel biomaterials with modern protein therapeutics has been crucial in the treatment of diseases that were once thought of as incurable. This has guided the development of a variety of alternative administration routes, but the oral delivery of therapeutics remains one of the most desirable due to its ease of administration. This review addresses important aspects of micellar structures prepared by self-assembled processes with applications for oral delivery. These two characteristics have not been placed together in previous literature within the field. Therefore, we describe the barriers for delivery of protein therapeutics, and we concentrate in the oral/transmucosal pathway where drug carriers must overcome several chemical, physical, and biological barriers to achieve a successful therapeutic effect. We critically discuss recent research on biomaterials systems for delivering such therapeutics with an emphasis on self-assembled synthetic block copolymers. Polymerization methods and nanoparticle preparation techniques are similarly analyzed as well as relevant work in this area. Based on our own and others' research, we analyze the use of block copolymers as therapeutic carriers and their promise in treating a variety of diseases, with emphasis on self-assembled micelles for the next generation of oral protein therapeutic systems.


Asunto(s)
Materiales Biocompatibles , Polímeros , Humanos , Polímeros/química , Portadores de Fármacos/química , Micelas , Proteínas/uso terapéutico , Sistemas de Liberación de Medicamentos/métodos
16.
Artículo en Inglés | MEDLINE | ID: mdl-36912849

RESUMEN

Multifunctional hydrogels composed of segments with ionizable, hydrophilic, and hydrophobic monomers have been optimized for sensing, bioseparation, and therapeutic applications. While the "biological identity" of bound proteins from biofluids underlies device performance in each context, design rules that predict protein binding outcomes from hydrogel design parameters are lacking. Uniquely, hydrogel designs that influence protein affinity (e.g., ionizable monomers, hydrophobic moieties, conjugated ligands, cross-linking) also affect physical properties (e.g., matrix stiffness, volumetric swelling). Here, we evaluated the influence of hydrophobic comonomer steric bulk and quantity on the protein recognition characteristics of ionizable microscale hydrogels (microgels) while controlling for swelling. Using a library synthesis approach, we identified compositions that balance the practical balance between protein-microgel affinity and the loaded mass at saturation. Intermediate quantities (10-30 mol %) of hydrophobic comonomer increased the equilibrium binding of certain model proteins (lysozyme, lactoferrin) in buffer conditions that favored complementary electrostatic interactions. Solvent-accessible surface area analysis of model proteins identified arginine content as highly predictive of model proteins' binding to our library of hydrogels containing acidic and hydrophobic comonomers. Taken together, we established an empirical framework for characterizing the molecular recognition properties of multifunctional hydrogels. Our study is the first to identify solvent-accessible arginine as an important predictor for protein binding to hydrogels containing both acidic and hydrophobic subunits.

17.
J Mater Chem B ; 11(2): 377-388, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36511476

RESUMEN

Controlling solute transport in hydrogels is critical for numerous chemical separation applications, tissue engineering, and drug delivery systems. In previous review work, we have pointed out that proposed theoretical models and associated experiments tend to oversimplify the influence of the hydrogel structure on solute transport by addressing only the effects of the polymer volume fraction and mesh size of the networks on solute transport. Here, we reexamine these models by experimenting with a library of multi-arm poly(ethylene glycol) (PEG) hydrogels with simultaneous variations in four independent structural parameters. Standardized, high-throughput fluorescence recovery after photobleaching (FRAP) experiments in hydrogels characterize size-dependent solute diffusion and partitioning in each hydrogel formulation. Solute diffusivity dependence on junction functionality shows an influence from network geometry that is not addressed by mesh size-based models, experimentally validating the use of the geometry-responsive mesh radius in solute diffusivity modeling. Furthermore, the Richbourg-Peppas swollen polymer network (SPN) model accurately predicts how three of the four structural parameters affect solute diffusivity in hydrogels. Comparison with the large pore effective medium (LPEM) model showed that the SPN model better predicts solute size and hydrogel structure effects on diffusivity. This study provides a framework for investigating solute transport in hydrogels that will continue to improve hydrogel design for tissue engineering and drug delivery.


Asunto(s)
Polietilenglicoles , Polímeros , Polietilenglicoles/química , Difusión , Polímeros/química , Hidrogeles/química , Materiales Biocompatibles/química
18.
iScience ; 25(11): 105326, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36325064

RESUMEN

Hematological cancers such as leukemia, lymphoma, and multiple myeloma have traditionally been treated with chemo and radiotherapy approaches. Introduction of immunotherapies for treatment of these diseases has led to patient remissions that would not have been possible with traditional approaches. In this critical review we identify main disease characteristics, symptoms, and current treatment options. Five common immunotherapies, namely checkpoint inhibitors, vaccines, cell-based therapies, antibodies, and oncolytic viruses, are described, and their applications in hematological cancers are critically discussed.

19.
Sci Adv ; 8(47): eadc8738, 2022 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-36427310

RESUMEN

Cancer vaccines have attracted widespread interest in tumor therapy because of the potential to induce an effective antitumor immune response. However, many challenges including weak immunogenicity, off-target effects, and immunosuppressive microenvironments have prevented their broad clinical translation. To overcome these difficulties, effective delivery systems have been designed for cancer vaccines. As carriers in cancer vaccine delivery systems, hydrogels have gained substantial attention because they can encapsulate a variety of antigens/immunomodulators and protect them from degradation. This enables hydrogels to simultaneously reverse immunosuppression and stimulate the immune response. Meanwhile, the controlled release properties of hydrogels allow for precise temporal and spatial release of loads in situ to further enhance the immune response of cancer vaccines. Therefore, this review summarizes the classification of cancer vaccines, highlights the strategies of hydrogel-based cancer vaccines, and provides some insights into the future development of hydrogel-based cancer vaccines.


Asunto(s)
Vacunas contra el Cáncer , Neoplasias , Humanos , Hidrogeles , Inmunoterapia , Adyuvantes Inmunológicos , Inmunidad , Neoplasias/terapia , Microambiente Tumoral
20.
Regen Biomater ; 9: rbac056, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36072265

RESUMEN

Over the past several decades, there have been major advancements in the field of glucose sensing and insulin delivery for the treatment of type I diabetes mellitus. The introduction of closed-loop insulin delivery systems that deliver insulin in response to specific levels of glucose in the blood has shifted significantly the research in this field. These systems consist of encapsulated glucose-sensitive components such as glucose oxidase or phenylboronic acid in hydrogels, microgels or nanoparticles. Since our previous evaluation of these systems in a contribution in 2004, new systems have been developed. Important improvements in key issues, such as consistent insulin delivery over an extended period of time have been addressed. In this contribution, we discuss recent advancements over the last 5 years and present persisting issues in these technologies that must be overcome in order for these systems to be applicable in patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...