Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
RNA Biol ; 18(12): 2296-2307, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33691590

RESUMEN

ABSTRASTDue to the redundancy of the genetic code most amino acids are encoded by several 'synonymous' codons. These codons are used unevenly, and each organism demonstrates its own unique codon usage bias, where the 'preferred' codons are associated with tRNAs that are found in high concentrations. Therefore, for decades, the prevailing view had been that preferred and non-preferred codons are linked to high or slow translation rates, respectively.However, this simplified view is contrasted by the frequent failures of codon-optimization efforts and by evidence of non-preferred (i.e. 'slow') codons having specific roles important for efficient production of functional proteins. One such specific role of slower codons is the regulation of co-translational protein folding, a complex biophysical process that is very challenging to model or to measure.Here, we combined a genome-wide approach with experiments to investigate the role of slow codons in protein production and co-translational folding. We analysed homologous gene groups from divergent bacteria and identified positions of inter-species conservation of bias towards slow codons. We then generated mutants where the conserved slow codons are substituted with 'fast' ones, and experimentally studied the effects of these codon substitutions. Using cellular and biochemical approaches we find that at certain locations, slow-to-fast codon substitutions reduce protein expression, increase protein aggregation, and impair protein function.This report provides an approach for identifying functionally relevant regions with slower codons and demonstrates that such codons are important for protein expression and function.


Asunto(s)
Bacillus subtilis/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Escherichia coli/genética , Secuencia de Aminoácidos , Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Uso de Codones , Secuencia Conservada , Escherichia coli/metabolismo , Evolución Molecular , Código Genético , Biosíntesis de Proteínas , Pliegue de Proteína , ARN de Transferencia/genética , Mutación Silenciosa
2.
J Mol Biol ; 430(9): 1368-1385, 2018 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-29530612

RESUMEN

Secondary multidrug (Mdr) transporters utilize ion concentration gradients to actively remove antibiotics and other toxic compounds from cells. The model Mdr transporter MdfA from Escherichia coli exchanges dissimilar drugs for protons. The transporter should open at the cytoplasmic side to enable access of drugs into the Mdr recognition pocket. Here we show that the cytoplasmic rim around the Mdr recognition pocket represents a previously overlooked important regulatory determinant in MdfA. We demonstrate that increasing the positive charge of the electrically asymmetric rim dramatically inhibits MdfA activity and sometimes even leads to influx of planar, positively charged compounds, resulting in drug sensitivity. Our results suggest that unlike the mutants with the electrically modified rim, the membrane-embedded wild-type MdfA exhibits a significant probability of an inward-closed conformation, which is further increased by drug binding. Since MdfA binds drugs from its inward-facing environment, these results are intriguing and raise the possibility that the transporter has a sensitive, drug-induced conformational switch, which favors an inward-closed state.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Mutación , Sitios de Unión , Cristalografía por Rayos X , Citoplasma/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Modelos Moleculares , Simulación del Acoplamiento Molecular , Unión Proteica , Estructura Secundaria de Proteína , Especificidad por Sustrato
3.
J Biol Chem ; 292(35): 14617-14624, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28710276

RESUMEN

Using the energy of ATP hydrolysis, ABC transporters catalyze the trans-membrane transport of molecules. In bacteria, these transporters partner with a high-affinity substrate-binding protein (SBP) to import essential micronutrients. ATP binding by Type I ABC transporters (importers of amino acids, sugars, peptides, and small ions) stabilizes the interaction between the transporter and the SBP, thus allowing transfer of the substrate from the latter to the former. In Type II ABC transporters (importers of trace elements, e.g. vitamin B12, heme, and iron-siderophores) the role of ATP remains debatable. Here we studied the interaction between the Yersinia pestis ABC heme importer (HmuUV) and its partner substrate-binding protein (HmuT). Using real-time surface plasmon resonance experiments and interaction studies in membrane vesicles, we find that in the absence of ATP the transporter and the SBP tightly bind. Substrate in excess inhibits this interaction, and ATP binding by the transporter completely abolishes it. To release the stable docked SBP from the transporter hydrolysis of ATP is required. Based on these results we propose a mechanism for heme acquisition by HmuUV-T where the substrate-loaded SBP docks to the nucleotide-free outward-facing conformation of the transporter. ATP binding leads to formation of an occluded state with the substrate trapped in the trans-membrane translocation cavity. Subsequent ATP hydrolysis leads to substrate delivery to the cytoplasm, release of the SBP, and resetting of the system. We propose that other Type II ABC transporters likely share the fundamentals of this mechanism.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Hemo/metabolismo , Hemoproteínas/metabolismo , Modelos Moleculares , Yersinia pestis/metabolismo , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/genética , Adenosina Trifosfato/química , Apoenzimas/química , Apoenzimas/genética , Apoenzimas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Portadoras/química , Proteínas Portadoras/genética , Membrana Celular/química , Membrana Celular/metabolismo , Dimerización , Hemo/química , Proteínas de Unión al Hemo , Hemoproteínas/química , Hemoproteínas/genética , Holoenzimas/química , Holoenzimas/genética , Holoenzimas/metabolismo , Hidrólisis , Proteínas Inmovilizadas/química , Proteínas Inmovilizadas/genética , Proteínas Inmovilizadas/metabolismo , Cinética , Simulación del Acoplamiento Molecular , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Receptores de Superficie Celular/química , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Proteínas Recombinantes , Resonancia por Plasmón de Superficie
4.
Prenat Diagn ; 23(1): 31-3, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12533809

RESUMEN

Leigh syndrome (LS) is a mitochondrial encephalopathy that is caused by a mutation either in the mitochondrial DNA (mtDNA) or in the nuclear encoded genes of the mitochondrial proteins. Prenatal diagnosis of defects in the mtDNA is usually problematic because of mtDNA heteroplasmy and tissue specificity. However, the mutations T8993 G/C in the ATP synthase subunit 6 gene of the mtDNA show a more even tissue distribution and do not appear to change significantly over time. There are only few reports of prenatal diagnosis of the T8993G mutation in Leigh disease. Here we describe the first prenatal genetic testing of T8993C in a fetus of a mother whose previous child had died of Leigh syndrome due to the T8993C mutation. Mutant load in the chorionic villus sample (CVS) as well as in amniocytes was undetectable, thus predicting a very high likelihood of an unaffected outcome, indicative of a healthy baby. The diagnosis was confirmed after birth. Gathering data on the prenatal diagnosis of mtDNA mutations is of great importance so that prenatal diagnosis of both T8993G and T8993C mutations can be offered routinely.


Asunto(s)
ADN Mitocondrial , Asesoramiento Genético , Enfermedad de Leigh/diagnóstico , Mutación Puntual , Diagnóstico Prenatal , Adulto , Amniocentesis , Muestra de la Vellosidad Coriónica , Análisis Mutacional de ADN , ADN Mitocondrial/análisis , Femenino , Humanos , Enfermedad de Leigh/genética , Reacción en Cadena de la Polimerasa , Embarazo , Resultado del Embarazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...