Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Ecol Evol ; 11(11): 6688-6702, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34141250

RESUMEN

Tropical ectotherm species tend to have narrower physiological limits than species from temperate areas. As a consequence, tropical species are considered highly vulnerable to climate change since minor temperature increases can push them beyond their physiological thermal tolerance. Differences in physiological tolerances can also be seen at finer evolutionary scales, such as among populations of ectotherm species along elevation gradients, highlighting the physiological sensitivity of such organisms.Here, we analyze the influence of elevation and bioclimatic domains, defined by temperature and precipitation, on thermal sensitivities of a terrestrial direct-developing frog (Craugastor loki) in a tropical gradient. We address the following questions: (a) Does preferred temperature vary with elevation and among bioclimatic domains? (b) Do thermal tolerance limits, that is, critical thermal maximum and critical thermal minimum vary with elevation and bioclimatic domains? and (c) Are populations from high elevations more vulnerable to climate warming?We found that along an elevation gradient body temperature decreases as environmental temperature increases. The preferred temperature tends to moderately increase with elevation within the sampled bioclimatic domains. Our results indicate that the ideal thermal landscape for this species is located at midelevations, where the thermal accuracy (db ) and thermal quality of the environment (de ) are suitable. The critical thermal maximum is variable across elevations and among the bioclimatic domains, decreasing as elevation increases. Conversely, the critical thermal minimum is not as variable as the critical thermal maximum.Populations from the lowlands may be more vulnerable to future increases in temperature. We highlight that the critical thermal maximum is related to high temperatures exhibited across the elevation gradient and within each bioclimatic domain; therefore, it is a response to high environmental temperatures.

2.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33888580

RESUMEN

The North American tiger salamander species complex, including its best-known species, the Mexican axolotl, has long been a source of biological fascination. The complex exhibits a wide range of variation in developmental life history strategies, including populations and individuals that undergo metamorphosis; those able to forego metamorphosis and retain a larval, aquatic lifestyle (i.e., paedomorphosis); and those that do both. The evolution of a paedomorphic life history state is thought to lead to increased population genetic differentiation and ultimately reproductive isolation and speciation, but the degree to which it has shaped population- and species-level divergence is poorly understood. Using a large multilocus dataset from hundreds of samples across North America, we identified genetic clusters across the geographic range of the tiger salamander complex. These clusters often contain a mixture of paedomorphic and metamorphic taxa, indicating that geographic isolation has played a larger role in lineage divergence than paedomorphosis in this system. This conclusion is bolstered by geography-informed analyses indicating no effect of life history strategy on population genetic differentiation and by model-based population genetic analyses demonstrating gene flow between adjacent metamorphic and paedomorphic populations. This fine-scale genetic perspective on life history variation establishes a framework for understanding how plasticity, local adaptation, and gene flow contribute to lineage divergence. Many members of the tiger salamander complex are endangered, and the Mexican axolotl is an important model system in regenerative and biomedical research. Our results chart a course for more informed use of these taxa in experimental, ecological, and conservation research.


Asunto(s)
Ambystoma/genética , Ambystoma/metabolismo , Ambystoma mexicanum/genética , Animales , Bases de Datos Genéticas , Flujo Génico , Genética de Población/métodos , Geografía , Larva/genética , Metamorfosis Biológica/genética , América del Norte , Filogenia
3.
Genetica ; 147(2): 149-164, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30879155

RESUMEN

Land use changes are threatening the maintenance of biodiversity. Genetic diversity is one of the main indicators of biological diversity and is highly important as it shapes the capability of populations to respond to environmental changes. We studied eleven populations of Pseudoeurycea robertsi, a micro-endemic and critically endangered species from the Nevado de Toluca Volcano, a mountain that is part of the Trans-Mexican Volcanic Belt, Mexico. We sequenced the mitochondrial cytochrome b gene from 71 individuals and genotyped 9 microsatellites from 150 individuals. Our results based on the cytochrome b showed two divergent lineages, with moderate levels of genetic diversity and a recently historical demographic expansion. Microsatellite-based results indicated low levels of heterozygosity for all populations and few alleles per locus, as compared with other mole salamander species. We identified two genetically differentiated subpopulations with a significant level of genetic structure. These results provide fundamental data for the development of management plans and conservation efforts for this critically endangered species.


Asunto(s)
Especies en Peligro de Extinción , Polimorfismo Genético , Urodelos/genética , Animales , Ecosistema , Repeticiones de Microsatélite
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...