Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Ther Nucleic Acids ; 35(3): 102304, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39281707

RESUMEN

Nanobodies are emerging as critical tools for drug design. Several have been recently created to serve as inhibitors of severe acute respiratory syndrome coronavirus s (SARS-CoV-2) entry in the host cell by targeting surface-exposed spike protein. Here we have established a pipeline that instead targets highly conserved viral proteins made only after viral entry into the host cell when the SARS-CoV-2 RNA-based genome is translated. As proof of principle, we designed nanobodies against the SARS-CoV-2 non-structural protein (Nsp)9, which is required for viral genome replication. One of these anti-Nsp9 nanobodies, 2NSP23, previously characterized using immunoassays and nuclear magnetic resonance spectroscopy for epitope mapping, was expressed and found to block SARS-CoV-2 replication specifically. We next encapsulated 2NSP23 nanobody into lipid nanoparticles (LNPs) as mRNA. We show that this nanobody, hereby referred to as LNP-mRNA-2NSP23, is internalized and translated in cells and suppresses multiple SARS-CoV-2 variants, as seen by qPCR and RNA deep sequencing. These results are corroborated in three-dimensional reconstituted human epithelium kept at air-liquid interface to mimic the outer surface of lung tissue. These observations indicate that LNP-mRNA-2NSP23 is internalized and, after translation, it inhibits viral replication by targeting Nsp9 in living cells. We speculate that LNP-mRNA-2NSP23 may be translated into an innovative strategy to generate novel antiviral drugs highly efficient across coronaviruses.

2.
PLoS One ; 19(5): e0303839, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38758765

RESUMEN

The interaction between SARS-CoV-2 non-structural protein Nsp9 and the nanobody 2NSP90 was investigated by NMR spectroscopy using the paramagnetic perturbation methodology PENELOP (Paramagnetic Equilibrium vs Nonequilibrium magnetization Enhancement or LOss Perturbation). The Nsp9 monomer is an essential component of the replication and transcription complex (RTC) that reproduces the viral gRNA for subsequent propagation. Therefore preventing Nsp9 recruitment in RTC would represent an efficient antiviral strategy that could be applied to different coronaviruses, given the Nsp9 relative invariance. The NMR results were consistent with a previous characterization suggesting a 4:4 Nsp9-to-nanobody stoichiometry with the occurrence of two epitope pairs on each of the Nsp9 units that establish the inter-dimer contacts of Nsp9 tetramer. The oligomerization state of Nsp9 was also analyzed by molecular dynamics simulations and both dimers and tetramers resulted plausible. A different distribution of the mapped epitopes on the tetramer surface with respect to the former 4:4 complex could also be possible, as well as different stoichiometries of the Nsp9-nanobody assemblies such as the 2:2 stoichiometry suggested by the recent crystal structure of the Nsp9 complex with 2NSP23 (PDB ID: 8dqu), a nanobody exhibiting essentially the same affinity as 2NSP90. The experimental NMR evidence, however, ruled out the occurrence in liquid state of the relevant Nsp9 conformational change observed in the same crystal structure.


Asunto(s)
Epítopos , Simulación de Dinámica Molecular , SARS-CoV-2 , Anticuerpos de Dominio Único , Proteínas no Estructurales Virales , Proteínas no Estructurales Virales/inmunología , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/inmunología , Anticuerpos de Dominio Único/metabolismo , SARS-CoV-2/inmunología , Epítopos/inmunología , Epítopos/química , Humanos , Espectroscopía de Resonancia Magnética , Unión Proteica , Multimerización de Proteína , COVID-19/inmunología , COVID-19/virología , Proteínas de Unión al ARN
4.
Nat Commun ; 14(1): 6328, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37816864

RESUMEN

Metabolic reprogramming is one of the hallmarks of tumorigenesis. Here, we show that nuclear myosin 1 (NM1) serves as a key regulator of cellular metabolism. NM1 directly affects mitochondrial oxidative phosphorylation (OXPHOS) by regulating mitochondrial transcription factors TFAM and PGC1α, and its deletion leads to underdeveloped mitochondria inner cristae and mitochondrial redistribution within the cell. These changes are associated with reduced OXPHOS gene expression, decreased mitochondrial DNA copy number, and deregulated mitochondrial dynamics, which lead to metabolic reprogramming of NM1 KO cells from OXPHOS to aerobic glycolysis.This, in turn, is associated with a metabolomic profile typical for cancer cells, namely increased amino acid-, fatty acid-, and sugar metabolism, and increased glucose uptake, lactate production, and intracellular acidity. NM1 KO cells form solid tumors in a mouse model, suggesting that the metabolic switch towards aerobic glycolysis provides a sufficient carcinogenic signal. We suggest that NM1 plays a role as a tumor suppressor and that NM1 depletion may contribute to the Warburg effect at the onset of tumorigenesis.


Asunto(s)
Glucólisis , Fosforilación Oxidativa , Ratones , Animales , Glucólisis/fisiología , Línea Celular Tumoral , Carcinogénesis/genética , Transformación Celular Neoplásica/metabolismo , Miosinas/metabolismo
5.
Sci Adv ; 9(34): eadg1610, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37624890

RESUMEN

The next steps of deep space exploration are manned missions to Moon and Mars. For safe space missions for crew members, it is important to understand the impact of space flight on the immune system. We studied the effects of 21 days dry immersion (DI) exposure on the transcriptomes of T cells isolated from blood samples of eight healthy volunteers. Samples were collected 7 days before DI, at day 7, 14, and 21 during DI, and 7 days after DI. RNA sequencing of CD3+ T cells revealed transcriptional alterations across all time points, with most changes occurring 14 days after DI exposure. At day 21, T cells showed evidence of adaptation with a transcriptional profile resembling that of 7 days before DI. At 7 days after DI, T cells again changed their transcriptional profile. These data suggest that T cells adapt by rewiring their transcriptomes in response to simulated weightlessness and that remodeling cues persist when reexposed to normal gravity.


Asunto(s)
Ingravidez , Humanos , Ingravidez/efectos adversos , Inmersión , Linfocitos T , Voluntarios , Transcriptoma
6.
Cell Rep ; 42(5): 112398, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37083330

RESUMEN

Spatiotemporal control of gene expression is important for neural development and function. Here, we show that heterogeneous nuclear ribonucleoprotein (hnRNP) A/B is highly expressed in developing olfactory sensory neurons (OSNs), and its knockout results in reduction in mature OSNs and aberrant targeting of OSN axons to the olfactory bulb. RNA immunoprecipitation analysis reveals that hnRNP A/B binds to a group of mRNAs that are highly related to axon projections and synapse assembly. Approximately 11% of the identified hnRNP A/B targets, including Pcdha and Ncam2, encode cell adhesion molecules. In Hnrnpab knockout mice, PCDHA and NCAM2 levels are significantly reduced at the axon terminals of OSNs. Furthermore, deletion of the hnRNP A/B-recognition motif in the 3' UTR of Pcdha leads to impaired PCDHA expression at the OSN axon terminals. Therefore, we propose that hnRNP A/B facilitates OSN maturation and axon projection by regulating the local expression of its target genes at axon terminals.


Asunto(s)
Neuronas Receptoras Olfatorias , Animales , Ratones , Axones/metabolismo , Ratones Noqueados , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Neurogénesis/genética , Bulbo Olfatorio , Neuronas Receptoras Olfatorias/metabolismo , Terminales Presinápticos/metabolismo
7.
Genome Biol ; 24(1): 18, 2023 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-36698204

RESUMEN

BACKGROUND: Recent work has demonstrated that three-dimensional genome organization is directly affected by changes in the levels of nuclear cytoskeletal proteins such as ß-actin. The mechanisms which translate changes in 3D genome structure into changes in transcription, however, are not fully understood. Here, we use a comprehensive genomic analysis of cells lacking nuclear ß-actin to investigate the mechanistic links between compartment organization, enhancer activity, and gene expression. RESULTS: Using HiC-Seq, ATAC-Seq, and RNA-Seq, we first demonstrate that transcriptional and chromatin accessibility changes observed upon ß-actin loss are highly enriched in compartment-switching regions. Accessibility changes within compartment switching genes, however, are mainly observed in non-promoter regions which potentially represent distal regulatory elements. Our results also show that ß-actin loss induces widespread accumulation of the enhancer-specific epigenetic mark H3K27ac. Using the ABC model of enhancer annotation, we then establish that these epigenetic changes have a direct impact on enhancer activity and underlie transcriptional changes observed upon compartment switching. A complementary analysis of fibroblasts undergoing reprogramming into pluripotent stem cells further confirms that this relationship between compartment switching and enhancer-dependent transcriptional change is not specific to ß-actin knockout cells but represents a general mechanism linking compartment-level genome organization to gene expression. CONCLUSIONS: We demonstrate that enhancer-dependent transcriptional regulation plays a crucial role in driving gene expression changes observed upon compartment-switching. Our results also reveal a novel function of nuclear ß-actin in regulating enhancer function by influencing H3K27 acetylation levels.


Asunto(s)
Actinas , Regulación de la Expresión Génica , Actinas/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Epigénesis Genética , Genoma , Elementos de Facilitación Genéticos , Cromatina
8.
Results Probl Cell Differ ; 70: 607-624, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36348124

RESUMEN

In the cell nucleus, actin participates in numerous essential processes. Actin is involved in chromatin as part of specific ATP-dependent chromatin remodeling complexes and associates with the RNA polymerase machinery to regulate transcription at multiple levels. Emerging evidence has also shown that the nuclear actin pool controls the architecture of the mammalian genome playing an important role in its hierarchical organization into transcriptionally active and repressed compartments, contributing to the clustering of RNA polymerase II into transcriptional hubs. Here, we review the most recent literature and discuss how actin involvement in genome organization impacts the regulation of gene programs that are activated or repressed during differentiation and development. As in the cytoplasm, we propose that nuclear actin is involved in key nuclear tasks in complex with different types of actin-binding proteins that regulate actin function and bridge interactions between actin and various nuclear components.


Asunto(s)
Actinas , Núcleo Celular , Animales , Actinas/metabolismo , Regulación de la Expresión Génica , Genoma , Cromatina/metabolismo , Transcripción Genética , Mamíferos/genética
9.
Anal Chem ; 94(31): 10949-10958, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35877130

RESUMEN

PENELOP (Paramagnetic Equilibrium vs Nonequilibrium magnetization Enhancement or LOss Perturbation) is the presented nuclear magnetic resonance (NMR) approach to identify at once the location of proteins' exposed surface, hindered accessibility, and exchange processes occurring on a µs-ms time scale. In addition to mapping the protein surface accessibility, the application of this method under specific conditions makes it possible to distinguish conformational mobility and chemical exchange processes, thereby providing an alternative to characterization by more demanding techniques (transverse relaxation dispersion, saturation transfer, and high-pressure NMR). Moreover, its high sensitivity enables studying samples at low, physiologically more relevant concentrations. Association, dynamics, and oligomerization are addressed by PENELOP for a component of SARS-CoV-2 replication transcription complex and an amyloidogenic protein.


Asunto(s)
COVID-19 , Agregado de Proteínas , Humanos , Conformación Molecular , Resonancia Magnética Nuclear Biomolecular/métodos , SARS-CoV-2
10.
Nat Commun ; 13(1): 1346, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35292632

RESUMEN

During transcription, RNA Polymerase II (RNAPII) is spatially organised within the nucleus into clusters that correlate with transcription activity. While this is a hallmark of genome regulation in mammalian cells, the mechanisms concerning the assembly, organisation and stability remain unknown. Here, we have used combination of single molecule imaging and genomic approaches to explore the role of nuclear myosin VI (MVI) in the nanoscale organisation of RNAPII. We reveal that MVI in the nucleus acts as the molecular anchor that holds RNAPII in high density clusters. Perturbation of MVI leads to the disruption of RNAPII localisation, chromatin organisation and subsequently a decrease in gene expression. Overall, we uncover the fundamental role of MVI in the spatial regulation of gene expression.


Asunto(s)
Cadenas Pesadas de Miosina , ARN Polimerasa II , Animales , Núcleo Celular/genética , Núcleo Celular/metabolismo , Mamíferos/genética , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Transcripción Genética
11.
Adv Biol (Weinh) ; 5(12): e2101113, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34705339

RESUMEN

Following the entry into the host cell, SARS-CoV-2 replication is mediated by the replication transcription complex (RTC) assembled through a number of nonstructural proteins (Nsps). A monomeric form of Nsp9 is particularly important for RTC assembly and function. In the present study, 136 unique nanobodies targeting Nsp9 are generated. Several nanobodies belonging to different B-cell lineages are expressed, purified, and characterized. Results from immunoassays applied to purified Nsp9 and neat saliva from coronavirus disease (COVID-19) patients show that these nanobodies effectively and specifically recognize both recombinant and endogenous Nsp9. Nuclear magnetic resonance analyses supported by molecular dynamics reveal a composite Nsp9 oligomerization pattern and demonstrate that both nanobodies stabilize the tetrameric form of wild-type Nsp9 also identifying the epitopes on the tetrameric assembly. These results can have important implications in the potential use of these nanobodies to combat viral replication.


Asunto(s)
COVID-19 , Anticuerpos de Dominio Único , Antivirales , Humanos , Espectroscopía de Resonancia Magnética , Proteínas de Unión al ARN , SARS-CoV-2 , Proteínas no Estructurales Virales/genética
12.
Nat Immunol ; 22(11): 1403-1415, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34686867

RESUMEN

Tumor-associated macrophages (TAMs) display pro-tumorigenic phenotypes for supporting tumor progression in response to microenvironmental cues imposed by tumor and stromal cells. However, the underlying mechanisms by which tumor cells instruct TAM behavior remain elusive. Here, we uncover that tumor-cell-derived glucosylceramide stimulated unconventional endoplasmic reticulum (ER) stress responses by inducing reshuffling of lipid composition and saturation on the ER membrane in macrophages, which induced IRE1-mediated spliced XBP1 production and STAT3 activation. The cooperation of spliced XBP1 and STAT3 reinforced the pro-tumorigenic phenotype and expression of immunosuppressive genes. Ablation of XBP1 expression with genetic manipulation or ameliorating ER stress responses by facilitating LPCAT3-mediated incorporation of unsaturated lipids to the phosphatidylcholine hampered pro-tumorigenic phenotype and survival in TAMs. Together, we uncover the unexpected roles of tumor-cell-produced lipids that simultaneously orchestrate macrophage polarization and survival in tumors via induction of ER stress responses and reveal therapeutic targets for sustaining host antitumor immunity.


Asunto(s)
Estrés del Retículo Endoplásmico , Retículo Endoplásmico/metabolismo , Membranas Intracelulares/metabolismo , Activación de Macrófagos , Melanoma/metabolismo , Lípidos de la Membrana/metabolismo , Neoplasias Cutáneas/metabolismo , Macrófagos Asociados a Tumores/metabolismo , Animales , Línea Celular Tumoral , Supervivencia Celular , Retículo Endoplásmico/ultraestructura , Glucosilceramidasa/metabolismo , Membranas Intracelulares/ultraestructura , Melanoma/genética , Melanoma/ultraestructura , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Fenotipo , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/ultraestructura , Escape del Tumor , Microambiente Tumoral , Macrófagos Asociados a Tumores/ultraestructura , Proteína 1 de Unión a la X-Box/genética , Proteína 1 de Unión a la X-Box/metabolismo
13.
Nat Commun ; 12(1): 5240, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34475390

RESUMEN

ß-actin is a crucial component of several chromatin remodeling complexes that control chromatin structure and accessibility. The mammalian Brahma-associated factor (BAF) is one such complex that plays essential roles in development and differentiation by regulating the chromatin state of critical genes and opposing the repressive activity of polycomb repressive complexes (PRCs). While previous work has shown that ß-actin loss can lead to extensive changes in gene expression and heterochromatin organization, it is not known if changes in ß-actin levels can directly influence chromatin remodeling activities of BAF and polycomb proteins. Here we conduct a comprehensive genomic analysis of ß-actin knockout mouse embryonic fibroblasts (MEFs) using ATAC-Seq, HiC-seq, RNA-Seq and ChIP-Seq of various epigenetic marks. We demonstrate that ß-actin levels can induce changes in chromatin structure by affecting the complex interplay between chromatin remodelers such as BAF/BRG1 and EZH2. Our results show that changes in ß-actin levels and associated chromatin remodeling activities can not only impact local chromatin accessibility but also induce reversible changes in 3D genome architecture. Our findings reveal that ß-actin-dependent chromatin remodeling plays a role in shaping the chromatin landscape and influences the regulation of genes involved in development and differentiation.


Asunto(s)
Actinas/metabolismo , Ensamble y Desensamble de Cromatina/fisiología , Actinas/genética , Animales , Cromatina/metabolismo , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Epigénesis Genética , Fibroblastos , Dosificación de Gen , Técnicas de Inactivación de Genes , Histonas/metabolismo , Ratones , Proteínas Nucleares/metabolismo , Proteínas del Grupo Polycomb/metabolismo , Unión Proteica , Factores de Transcripción/metabolismo
14.
Front Cell Dev Biol ; 9: 682294, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34422807

RESUMEN

Actin cytoskeletal dynamics drive cellular shape changes, linking numerous cell functions to physiological and pathological cues. Mutations in actin regulators that are differentially expressed or enriched in immune cells cause severe human diseases known as primary immunodeficiencies underscoring the importance of efficienct actin remodeling in immune cell homeostasis. Here we discuss recent findings on how immune cells sense the mechanical properties of their environement. Moreover, while the organization and biochemical regulation of cytoplasmic actin have been extensively studied, nuclear actin reorganization is a rapidly emerging field that has only begun to be explored in immune cells. Based on the critical and multifaceted contributions of cytoplasmic actin in immune cell functionality, nuclear actin regulation is anticipated to have a large impact on our understanding of immune cell development and functionality.

15.
FEBS J ; 288(16): 4812-4832, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33606336

RESUMEN

Ezrin-Radixin-Moesin (ERM) proteins play an essential role in the cytoplasm by cross-linking actin filaments with plasma membrane proteins. Research has identified the nuclear localization of ERMs, as well as the involvement of a single Drosophila ERM protein, Moesin, in nuclear mRNA exports. However, the question of how important the nuclear activity of ERM proteins are for the life of an organism has so far not been explored. Here, we present the first attempt to reveal the in vivo relevance of nuclear localization of Moesin in Drosophila. With the help of a nuclear export signal, we decreased the amount of Moesin in the nuclei of the animals. Furthermore, we observed various developmental defects, demonstrating the importance of ERM function in the nucleus for the first time. Transcriptome analysis of the mutant flies revealed that the lack of nuclear Moesin function leads to expression changes in nearly 700 genes, among them heat-shock genes. This result together with additional findings revealed that in Drosophila the expression of protein chaperones requires the nuclear functions of Moesin. DATABASE: GEO accession number: GSE155778.


Asunto(s)
Proteínas de la Membrana/metabolismo , Actinas/genética , Actinas/metabolismo , Animales , Núcleo Celular/metabolismo , Drosophila , Regulación de la Expresión Génica/genética , Proteínas de la Membrana/genética
16.
J Biochem ; 169(3): 243-257, 2021 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-33351909

RESUMEN

Actin is an essential regulator of cellular functions. In the eukaryotic cell nucleus, actin regulates chromatin as a bona fide component of chromatin remodelling complexes, it associates with nuclear RNA polymerases to regulate transcription and is involved in co-transcriptional assembly of nascent RNAs into ribonucleoprotein complexes. Actin dynamics are, therefore, emerging as a major regulatory factor affecting diverse cellular processes. Importantly, the involvement of actin dynamics in nuclear functions is redefining the concept of nucleoskeleton from a rigid scaffold to a dynamic entity that is likely linked to the three-dimensional organization of the nuclear genome. In this review, we discuss how nuclear actin, by regulating chromatin structure through phase separation may contribute to the architecture of the nuclear genome during cell differentiation and facilitate the expression of specific gene programs. We focus specifically on mitochondrial genes and how their dysregulation in the absence of actin raises important questions about the role of cytoskeletal proteins in regulating chromatin structure. The discovery of a novel pool of mitochondrial actin that serves as 'mitoskeleton' to facilitate organization of mtDNA supports a general role for actin in genome architecture and a possible function of distinct actin pools in the communication between nucleus and mitochondria.


Asunto(s)
Actinas/metabolismo , Cromatina/metabolismo , Matriz Nuclear/metabolismo , Actinas/genética , Animales , Diferenciación Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Regulación de la Expresión Génica , Genes Mitocondriales , Genoma , Humanos , Matriz Nuclear/genética , Transcripción Genética
17.
Adv Sci (Weinh) ; 7(23): 2002261, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33304760

RESUMEN

Actin plays fundamental roles in both the cytoplasm and the cell nucleus. In the nucleus, ß-actin regulates neuronal reprogramming by consolidating a heterochromatin landscape required for transcription of neuronal gene programs, yet it remains unknown whether it has a role in other differentiation models. To explore the potential roles of ß-actin in osteogenesis, ß-actin wild-type (WT) and ß-actin knockout (KO) mouse embryonic fibroblasts (MEFs) are reprogrammed to osteoblast-like cells using small molecules in vitro. It is discovered that loss of ß-actin leads to an accelerated mineralization phenotype (hypermineralization), accompanied with enhanced formation of extracellular hydroxyapatite microcrystals, which originate in the mitochondria in the form of microgranules. This phenotype is a consequence of rapid upregulation of mitochondrial genes including those involved in oxidative phosphorylation (OXPHOS) in reprogrammed KO cells. It is further found that osteogenic gene programs are differentially regulated between WT and KO cells, with clusters of genes exhibiting different temporal expression patterns. A novel function for ß-actin in osteogenic reprogramming through a mitochondria-based mechanism that controls cell-mediated mineralization is proposed.

18.
Biomolecules ; 10(11)2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33213097

RESUMEN

Cell-penetrating peptides (CPPs) are short peptides that are able to efficiently penetrate cellular lipid bilayers. Although CPPs have been used as carriers in conjugation with certain cargos to target specific genes and pathways, how rationally designed CPPs per se affect global gene expression has not been investigated. Therefore, following time course treatments with 4 CPPs-penetratin, PepFect14, mtCPP1 and TP10, HeLa cells were transcriptionally profiled by RNA sequencing. Results from these analyses showed a time-dependent response to different CPPs, with specific sets of genes related to ribosome biogenesis, microtubule dynamics and long-noncoding RNAs being differentially expressed compared to untreated controls. By using an image-based high content phenotypic profiling platform we confirmed that differential gene expression in CPP-treated HeLa cells strongly correlates with changes in cellular phenotypes such as increased nucleolar size and dispersed microtubules, compatible with altered ribosome biogenesis and cell growth. Altogether these results suggest that cells respond to different cell penetrating peptides by alteration of specific sets of genes, which are possibly part of the common response to such stimulus.


Asunto(s)
Péptidos de Penetración Celular/biosíntesis , Microtúbulos/metabolismo , ARN Largo no Codificante/biosíntesis , Ribosomas/metabolismo , Transcripción Genética/fisiología , Membrana Celular/genética , Membrana Celular/metabolismo , Péptidos de Penetración Celular/genética , Expresión Génica , Redes Reguladoras de Genes/fisiología , Células HeLa , Humanos , Microtúbulos/genética , ARN Largo no Codificante/genética , Ribosomas/genética
19.
Int Rev Cell Mol Biol ; 355: 67-108, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32859373

RESUMEN

Cytoskeletal proteins are beginning to be considered as key regulators of nuclear function. Among them, actin and myosin have been implicated in numerous tasks, including chromatin regulation, transcription and assembly of nascent ribonucleoprotein complexes. We also know from work performed by several labs that influx of actin and myosin into the nucleus and out of the nucleus is tightly regulated. In particular, in the case of actin, its nucleocytoplasmic import/export cycle is controlled by the importin/exportin system and it correlates with the transcriptional state of the cell. These basic molecular functions of both actin and myosin seem to impact key cellular functions, including development and differentiation as well as the cellular response to DNA damage by directly affecting transcriptional reprograming. These observations are beginning to suggest that actin and myosin could play an important role in consolidating the organization of the mammalian genome and that loss of actin and myosin likely leads to a general instability of the genome. In this chapter, we provide a general background on evidence that actin and myosin are important in key nuclear functions. Following this, we will focus on evidence supporting of a role in genome organization and finally we will discuss increasingly striking results on the role of actin and myosin in the maintenance of genome integrity.


Asunto(s)
Actinas/metabolismo , Núcleo Celular/metabolismo , Cromatina/metabolismo , Inestabilidad Genómica , Miosinas/metabolismo , Animales , Humanos
20.
Commun Biol ; 3(1): 115, 2020 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-32161327

RESUMEN

Nuclear myosin 1 (NM1) has been implicated in key nuclear functions. Together with actin, it has been shown to initiate and regulate transcription, it is part of the chromatin remodeling complex B-WICH, and is responsible for rearrangements of chromosomal territories in response to external stimuli. Here we show that deletion of NM1 in mouse embryonic fibroblasts leads to chromatin and transcription dysregulation affecting the expression of DNA damage and cell cycle genes. NM1 KO cells exhibit increased DNA damage and changes in cell cycle progression, proliferation, and apoptosis, compatible with a phenotype resulting from impaired p53 signaling. We show that upon DNA damage, NM1 forms a complex with p53 and activates the expression of checkpoint regulator p21 (Cdkn1A) by PCAF and Set1 recruitment to its promoter for histone H3 acetylation and methylation. We propose a role for NM1 in the transcriptional response to DNA damage response and maintenance of genome stability.


Asunto(s)
Núcleo Celular/metabolismo , Ensamble y Desensamble de Cromatina , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Daño del ADN , Miosina Tipo I/metabolismo , Transcripción Genética , Animales , Apoptosis , Ciclo Celular , Línea Celular , Núcleo Celular/efectos de los fármacos , Núcleo Celular/genética , Núcleo Celular/patología , Proliferación Celular , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Epigénesis Genética , Etopósido/toxicidad , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Ratones , Miosina Tipo I/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Factores de Transcripción p300-CBP/genética , Factores de Transcripción p300-CBP/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...