Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 5033, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38866783

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease due to gradual motoneurons (MN) degeneration. Among the processes associated to ALS pathogenesis, there is the formation of cytoplasmic inclusions produced by aggregation of mutant proteins, among which the RNA binding protein FUS. Here we show that, in neuronal cells and in iPSC-derived MN expressing mutant FUS, such inclusions are significantly reduced in number and dissolve faster when the RNA m6A content is diminished. Interestingly, stress granules formed in ALS conditions showed a distinctive transcriptome with respect to control cells, which reverted to similar to control after m6A downregulation. Notably, cells expressing mutant FUS were characterized by higher m6A levels suggesting a possible link between m6A homeostasis and pathological aggregates. Finally, we show that FUS inclusions are reduced also in patient-derived fibroblasts treated with STM-2457, an inhibitor of METTL3 activity, paving the way for its possible use for counteracting aggregate formation in ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Células Madre Pluripotentes Inducidas , Neuronas Motoras , Proteína FUS de Unión a ARN , Proteína FUS de Unión a ARN/metabolismo , Proteína FUS de Unión a ARN/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Humanos , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Células Madre Pluripotentes Inducidas/metabolismo , Gránulos Citoplasmáticos/metabolismo , Fibroblastos/metabolismo , Adenosina/metabolismo , Adenosina/análogos & derivados , Metiltransferasas/metabolismo , Metiltransferasas/genética , Mutación , Cuerpos de Inclusión/metabolismo , Gránulos de Estrés/metabolismo , Transcriptoma
2.
Nat Commun ; 14(1): 8224, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38086853

RESUMEN

Biomolecular condensates serve as membrane-less compartments within cells, concentrating proteins and nucleic acids to facilitate precise spatial and temporal orchestration of various biological processes. The diversity of these processes and the substantial variability in condensate characteristics present a formidable challenge for quantifying their molecular dynamics, surpassing the capabilities of conventional microscopy. Here, we show that our single-photon microscope provides a comprehensive live-cell spectroscopy and imaging framework for investigating biomolecular condensation. Leveraging a single-photon detector array, single-photon microscopy enhances the potential of quantitative confocal microscopy by providing access to fluorescence signals at the single-photon level. Our platform incorporates photon spatiotemporal tagging, which allowed us to perform time-lapse super-resolved imaging for molecular sub-diffraction environment organization with simultaneous monitoring of molecular mobility, interactions, and nano-environment properties through fluorescence lifetime fluctuation spectroscopy. This integrated correlative study reveals the dynamics and interactions of RNA-binding proteins involved in forming stress granules, a specific type of biomolecular condensates, across a wide range of spatial and temporal scales. Our versatile framework opens up avenues for exploring a broad spectrum of biomolecular processes beyond the formation of membrane-less organelles.


Asunto(s)
Microscopía , Ácidos Nucleicos , Condensados Biomoleculares , Proteínas/química , Ácidos Nucleicos/química , Espectrometría de Fluorescencia
3.
Nat Commun ; 13(1): 7406, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36456575

RESUMEN

Fluorescence laser-scanning microscopy (LSM) is experiencing a revolution thanks to new single-photon (SP) array detectors, which give access to an entirely new set of single-photon information. Together with the blooming of new SP LSM techniques and the development of tailored SP array detectors, there is a growing need for (i) DAQ systems capable of handling the high-throughput and high-resolution photon information generated by these detectors, and (ii) incorporating these DAQ protocols in existing fluorescence LSMs. We developed an open-source, low-cost, multi-channel time-tagging module (TTM) based on a field-programmable gate array that can tag in parallel multiple single-photon events, with 30 ps precision, and multiple synchronisation events, with 4 ns precision. We use the TTM to demonstrate live-cell super-resolved fluorescence lifetime image scanning microscopy and fluorescence lifetime fluctuation spectroscopy. We expect that our BrightEyes-TTM will support the microscopy community in spreading SP-LSM in many life science laboratories.


Asunto(s)
Neoplasias de Células Escamosas , Neoplasias Cutáneas , Humanos , Microscopía Confocal , Fotones
4.
Biophys Rep (N Y) ; 1(2): None, 2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34939046

RESUMEN

The single-photon timing and sensitivity performance and the imaging ability of asynchronous-readout single-photon avalanche diode (SPAD) array detectors have opened up enormous perspectives in fluorescence (lifetime) laser scanning microscopy (FLSM), such as super-resolution image scanning microscopy and high-information content fluorescence fluctuation spectroscopy. However, the strengths of these FLSM techniques depend on the many different characteristics of the detector, such as dark noise, photon-detection efficiency, after-pulsing probability, and optical cross talk, whose overall optimization is typically a trade-off between these characteristics. To mitigate this trade-off, we present, to our knowledge, a novel SPAD array detector with an active cooling system that substantially reduces the dark noise without significantly deteriorating any other detector characteristics. In particular, we show that lowering the temperature of the sensor to -15°C significantly improves the signal/noise ratio due to a 10-fold decrease in the dark count rate compared with room temperature. As a result, for imaging, the laser power can be decreased by more than a factor of three, which is particularly beneficial for live-cell super-resolution imaging, as demonstrated in fixed and living cells expressing green-fluorescent-protein-tagged proteins. For fluorescence fluctuation spectroscopy, together with the benefit of the reduced laser power, we show that cooling the detector is necessary to remove artifacts in the correlation function, such as spurious negative correlations observed in the hot elements of the detector, i.e., elements for which dark noise is substantially higher than the median value. Overall, this detector represents a further step toward the integration of SPAD array detectors in any FLSM system.

5.
Lab Chip ; 21(4): 735-745, 2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33491697

RESUMEN

Despite the importance for cellular processes, the dynamics of molecular assembly, especially on fast time scales, is not yet fully understood. To this end, we present a multi-layer microfluidic device and combine it with fluorescence fluctuation spectroscopy. We apply this innovative combination of methods to investigate the early steps in assembly of vimentin intermediate filaments (IFs). These filaments, together with actin filaments and microtubules, constitute the cytoskeleton of cells of mesenchymal origin and greatly influence their mechanical properties. We are able to directly follow the two-step assembly process of vimentin IFs and quantify the time scale of the first lateral step to tens of ms with a lag time of below 3 ms. Although demonstrated for a specific biomolecular system here, our method may potentially be employed for a wide range of fast molecular reactions in biological or, more generally, soft matter systems, as it allows for a precise quantification of the kinetics underlying the aggregation and assembly.


Asunto(s)
Citoesqueleto , Filamentos Intermedios , Citoesqueleto de Actina , Análisis Espectral , Vimentina
6.
Sci Rep ; 10(1): 21086, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33273508

RESUMEN

Protein dynamics in the synaptic bouton are still not well understood, despite many quantitative studies of synaptic structure and function. The complexity of the synaptic environment makes investigations of presynaptic protein mobility challenging. Here, we present an in vitro approach to create a minimalist model of the synaptic environment by patterning synaptic vesicles (SVs) on glass coverslips. We employed fluorescence correlation spectroscopy (FCS) to measure the mobility of monomeric enhanced green fluorescent protein (mEGFP)-tagged proteins in the presence of the vesicle patterns. We observed that the mobility of all eleven measured proteins is strongly reduced in the presence of the SVs, suggesting that they all bind to the SVs. The mobility observed in these conditions is within the range of corresponding measurements in synapses of living cells. Overall, our simple, but robust, approach should enable numerous future studies of organelle-protein interactions in general.


Asunto(s)
Imagen Individual de Molécula/métodos , Vesículas Sinápticas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Modelos Teóricos , Unión Proteica , Transporte de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Transporte Vesicular/genética
7.
EMBO J ; 39(16): e104596, 2020 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-32627850

RESUMEN

Many proteins involved in synaptic transmission are well known, and their features, as their abundance or spatial distribution, have been analyzed in systematic studies. This has not been the case, however, for their mobility. To solve this, we analyzed the motion of 45 GFP-tagged synaptic proteins expressed in cultured hippocampal neurons, using fluorescence recovery after photobleaching, particle tracking, and modeling. We compared synaptic vesicle proteins, endo- and exocytosis cofactors, cytoskeleton components, and trafficking proteins. We found that movement was influenced by the protein association with synaptic vesicles, especially for membrane proteins. Surprisingly, protein mobility also correlated significantly with parameters as the protein lifetimes, or the nucleotide composition of their mRNAs. We then analyzed protein movement thoroughly, taking into account the spatial characteristics of the system. This resulted in a first visualization of overall protein motion in the synapse, which should enable future modeling studies of synaptic physiology.


Asunto(s)
Hipocampo/metabolismo , Modelos Neurológicos , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Transmisión Sináptica , Vesículas Sinápticas/metabolismo , Animales , Hipocampo/citología , Neuronas/citología , Transporte de Proteínas , Ratas
8.
Soft Matter ; 15(9): 2009-2019, 2019 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-30724316

RESUMEN

In their physiological environment, blood platelets are permanently exposed to shear forces caused by blood flow. Within this surrounding, they generate contractile forces that eventually lead to a compaction of the blood clot. Here, we present a microfluidic chamber that combines hydrogel-based traction force microscopy with a controlled shear environment, and investigate the force fields platelets generate when exposed to shear flow in a spatio-temporally resolved manner. We find that for shear rates between 14 s-1 to 33 s-1, the general contraction behavior in terms of force distribution and magnitude does not differ from no-flow conditions. The main direction of contraction, however, does respond to the externally applied stress. At high shear stress, we observe an angle of about 90° between flow direction and main contraction axis. We explain this observation by the distribution of the stress acting on the adherent cell: the observed angle provides the most stable situation for the cell experiencing the shear flow, as supported by a finite element method simulation of the stresses along the platelet boundary.


Asunto(s)
Plaquetas/fisiología , Resistencia al Corte , Fenómenos Biomecánicos , Plaquetas/citología , Adhesión Celular , Humanos , Dispositivos Laboratorio en un Chip , Estrés Mecánico
9.
Lab Chip ; 18(1): 171-178, 2017 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-29210424

RESUMEN

The combination of microfluidics and X-ray methods attracts a lot of attention from researchers as it brings together the high controllability of microfluidic sample environments and the small length scales probed by X-rays. In particular, the fields of biophysics and biology have benefited enormously from such approaches. We introduce a straightforward fabrication method for X-ray compatible microfluidic devices made solely from cyclic olefin copolymers. We benchmark the performance of the devices against other devices including more commonly used Kapton windows and obtain data of equal quality using small angle X-ray scattering. An advantage of the devices presented here is that no gluing between interfaces is necessary, rendering the production very reliable. As a biophysical application, we investigate the early time points of the assembly of vimentin intermediate filament proteins into higher-order structures. This weakly scattering protein system leads to high quality data in the new devices, thus opening up the way for numerous future applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...