RESUMEN
Physical exercise is recognized as a non-pharmacological approach to treat and protect against several neuroinflammatory conditions and thus to prevent brain disorders. However, the interest in ergogenic resources by athletes and bodybuilding practitioners is widespread and on the rise. These substances shorten the process of performance gain and improve aesthetics, having led to the prominent use and abuse of hormones in the past years. Recent evidence has shown that the purinergic system, composed of adenine nucleotides, nucleosides, enzymes, and receptors, participates in a wide range of processes within the brain, such as neuroinflammation, neuromodulation, and cellular communication. Here, we investigated the effects of the anabolic androgenic steroid (AAS) testosterone (TES) at a dose of 70 mg/kg/week in female rats and the neuroprotective effect of resistance exercise related to the purinergic system and oxidative stress parameters. Our findings showed a decrease in ATP and ADO hydrolysis in treated and trained animals. Furthermore, there was an increase in the density of purinoceptors (P2X7 and A2A) and inflammatory markers (IBA-1, NRLP3, CASP-1, IL-1ß, and IL-6) in the cerebral cortex of animals that received AAS. On the other hand, exercise reversed neuroinflammatory parameters such as IBA-1, NLRP3, CASP-1, and IL-1ß and improved antioxidant response and anti-inflammatory IL-10 cytokine levels. Overall, this study shows that the use of TES without indication or prescription disrupts brain homeostasis, as demonstrated by the increase in neuroinflammation, and that the practice of exercise can protect brain health.
Asunto(s)
Anabolizantes , Entrenamiento de Fuerza , Humanos , Ratas , Femenino , Animales , Testosterona , Anabolizantes/farmacología , Enfermedades Neuroinflamatorias , Congéneres de la Testosterona/farmacología , EncéfaloRESUMEN
Several studies have indicated the vitamin D deficiency in the development of macro- and microvascular complications of diabetes mellitus (DM) including DM-related cognitive dysfunction. The purinergic system plays an important role in the modulation of a variety of mechanisms, including neuroinflammation, plasticity, and cell-cell communication. In addition, purines, their receptors, and enzymes can regulate the purinergic axis at different levels in type 1 DM (T1DM). This study evaluated the effects of vitamin D3 alone or in combination with metformin in the behavioral performance of streptozotocin-induced T1DM rats. The effects of this combination on the metabolism of ATP and ADP were also studied by NTPDase (CD39), AMP by 5'-nucleotidase (CD73), and adenosine by adenosine deaminase (E-ADA) in the brain and peripheral lymphocytes of type 1 diabetic STZ-induced rats. The results showed that anxiety and memory loss from the DM condition reverted after 30 days of vitamin D3 treatment. Furthermore, the DM state affected systemic enzymes, with no effect on the central enzymes hydrolyzing extracellular nucleotides and nucleosides. Vitamin D3 treatment positively regulated ectonucleotidase (NTPDase and 5'-nucleotidase) activity, E-ADA, and the purinergic receptors as a mechanism to prevent oxidative damage in the cerebral cortex of T1DM rats. A neuroprotector effect of vitamin D3 through adenosine signaling was also observed, by regulating A1 and A2A receptors proteins levels. The present findings suggest that purinergic signaling through vitamin D3 modulation may be a novel alternative strategy for T1DM treatment, and may compensate for the negative changes in the central nervous system.
Asunto(s)
Diabetes Mellitus Tipo 1 , Metformina , Ratas , Animales , Colecalciferol , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/tratamiento farmacológico , 5'-Nucleotidasa/metabolismo , Metformina/farmacología , Adenosina/farmacologíaRESUMEN
Diabetes Mellitus (DM) is associated with an increased susceptibility to various infections, which might be attributed to changes in immune response owing to chronic hyperglycemia. Nucleoside triphosphate diphosphohydrolase (NTPDase), 5'-nucleotidase, and adenosine deaminase (ADA) are important enzymes involved in the generation of anti-aggregant and anti-inflammatory microenvironments. The aim of this study was to evaluate the effect of gallic acid (GA) on the hematological parameters and ectonucleotidase activities in platelets, lymphocytes, and serum of diabetic rats. Experimental rats were categorized into 4 groups: (i) control -saline, (ii) control - GA, (iii) diabetic -saline, and (iv) diabetic - GA. One week after induction of DM using streptozotocin (65â¯mg/kg), GA (30â¯mg/kg) or saline was orally administered to the rats for 21 days. Our results demonstrated that the concentration of mean corpuscular hemoglobin was decreased, whereas that of red cell distribution was increased in the diabetic group, however, GA could revert these alterations. Moreover, in diabetic rats, GA reverted the increase in ATP and ADP hydrolysis and ADA activity in lymphocytes, and it prevented the increase in NTPDase and ADA activities in platelets. A decrease in ATP hydrolysis and an increase in ADP and AMP hydrolysis were observed in the serum of diabetic rats; however, GA treatment could solely revert changes in ATP hydrolysis. Our study suggests that GA exhibits beneficial effects on immuno- and thrombo-regulatory responses in DM and that these effects may be related to the modulation of purinergic signaling.